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Preface

Initial value ordinary differential equations (ODEs) and partial differential
equations (PDEs) are among the most widely used forms of mathematics in
science and engineering. However, insights from ODE/PDE-based models
are realized only when solutions to the equations are produced with accept-
able accuracy and with reasonable effort.

Most ODE/PDE models are complicated enough (e.g., sets of simultane-
ous nonlinear equations) to preclude analytical methods of solution; instead,
numerical methods must be used, which is the central topic of this book.

The calculation of a numerical solution usually requires that well-
established numerical integration algorithms are implemented in quality li-
brary routines. The library routines in turn can be coded (programmed) in a
variety of programming languages. Typically, for a scientist or engineer with
an ODE/PDE- based mathematical model, finding routines written in a famil-
iar language can be a demanding requirement, and perhaps even impossible
(if such routines do not exist).

The purpose of this book, therefore, is to provide a set of ODE/PDE in-
tegration routines written in six widely accepted and used languages. Our
intention is to facilitate ODE/PDE-based analysis by using the library rou-
tines to compute reliable numerical solutions to the ODE/PDE system of
interest.

However, the integration of ODE/PDEs is a large subject, and to keep this
discussion to reasonable length, we have limited the selection of algorithms
and the associated routines. Specifically, we concentrate on explicit (nonstiff)
Runge Kutta (RK) embedded pairs. Within this setting, we have provided
integrators that are both fixed step and variable step; the latter accept a user-
specified error tolerance and attempt to compute a solution to this required
accuracy. The discussion of ODE integration includes truncation error moni-
toring and control, h and p refinement, stability and stiffness, and explicit and
implicit algorithms. Extensions to stiff systems are also discussed and illus-
trated through an ODE application; however, a detailed presentation of stiff
(implicit) algorithms and associated software in six languages was judged
impractical for a book of reasonable length.

Further, we have illustrated the application of the ODE integration routines
to PDEs through the method of lines (MOL). Briefly, the spatial (boundary
value) derivatives of the PDEs are approximated algebraically, typically by
finite differences (FDs); the resulting system of initial-value ODEs is then
solved numerically by one of the ODE routines.



Thus, we have attempted to provide the reader with a set of computational
tools for the convenient solution of ODE/PDE models when programming
in any of the six languages. The discussion is introductory with limited math-
ematical details. Rather, we rely on numerical results to illustrate some basic
mathematical properties, and we avoid detailed mathematical analysis (e.g.,
theorems and proofs), which may not really provide much assistance in the
actual calculation of numerical solutions to ODE/PDE problems.

Instead, we have attempted to provide useful computational tools in the
form of software. The use of the software is illustrated through a small number
of ODE/PDE applications; in each case, the complete code is first presented,
and then its components are discussed in detail, with particular reference
to the concepts of integration, e.g., stability, error monitoring, and control.
Since the algorithms and the associated software have limitations (as do all
algorithms and software), we have tried to point out these limitations, and
make suggestions for additional methods that could be effective.

Also, we have intentionally avoided using features specific to a particular
language, e.g., sparse utilities, object-oriented programming. Rather, we have
emphasized the commonality of the programming in the six languages, and
thereby illustrate how scientific computation can be done in any of the lan-
guages. Of course, language-specific features can be added to the source code
that is provided.

We hope this format will allow the reader to understand the basic elements
of ODE/PDE integration, and then proceed expeditiously to a numerical solu-
tion of the ODE/PDE system of interest. The applications discussed in detail,
two in ODEs and two in PDEs, can be used as a starting point (i.e., as tem-
plates) for the development of a spectrum of new applications.

We welcome comments and questions about how we might be of assis-
tance (directed to wes1@lehigh.edu). Information for acquiring (gratis) all the
source code in this book is available from http://www.lehigh.edu/˜ wes1/
wes1.html. Additional information about the book and software is available
from the CRC Press Web site, http://www.crcpress.com.

Dr. Fred Chapman provided expert assistance with the Maple program-
ming. We note with sadness the passing of Jaeson Lee, father of H. J. Lee,
during the completion of H. J. Lee’s graduate studies at Lehigh University.

H. J. Lee
W. E. Schiesser

Bethlehem, PA



Contents

1 Some Basics of ODE Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 General Initial Value ODE Problem . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.2 Origin of ODE Integrators in the Taylor Series . . . . . . . . . . . . . . . . 7
1.3 The Runge Kutta Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Accuracy of RK Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Embedded RK Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
1.6 Library ODE Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.7 Stability of RK Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

2 Solution of a 1x1 ODE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.1 Programming in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
2.2 Programming in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
2.3 Programming in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.4 Programming in Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
2.5 Programming in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
2.6 Programming in Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

3 Solution of a 2x2 ODE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
3.1 Programming in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291
3.2 Programming in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
3.3 Programming in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
3.4 Programming in Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
3.5 Programming in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
3.6 Programming in Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

4 Solution of a Linear PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
4.1 Programming in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344
4.2 Programming in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
4.3 Programming in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
4.4 Programming in Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
4.5 Programming in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
4.6 Programming in Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

5 Solution of a Nonlinear PDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
5.1 Programming in MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .402
5.2 Programming in C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
5.3 Programming in C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
5.4 Programming in Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425



5.5 Programming in Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
5.6 Programming in Maple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Appendix A Embedded Runge Kutta Pairs . . . . . . . . . . . . . . . . . . . . . . . .451

Appendix B Integrals from ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Appendix C Stiff ODE Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
C.1 The BDF Formulas Applied to the 2x2 ODE System . . . . . . . . 465
C.2 MATLAB Program for the Solution of the

2x2 ODE System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468
C.3 MATLAB Program for the Solution of the 2x2 ODE System

Using ode23s and ode15s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477

Appendix D Alternative Forms of ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . 489

Appendix E Spatial p Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Appendix F Testing ODE/PDE Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511



1
Some Basics of ODE Integration

The central topic of this book is the programming and use of a set of li-
brary routines for the numerical solution (integration) of systems of initial
value ordinary differential equations (ODEs). We start by reviewing some
of the basic concepts of ODEs, including methods of integration, that are
the mathematical foundation for an understanding of the ODE integration
routines.

1.1 General Initial Value ODE Problem

The general problem for a single initial-value ODE is simply stated as

dy
dt

= f (y, t), y(t0) = y0 (1.1)(1.2)

where
y = dependent variable
t = independent variable

f (y, t) = derivative function
t0 = initial value of the independent variable
y0 = initial value of the dependent variable

Equations 1.1 and 1.2 will be termed a 1x1 problem (one equation in one un-
known). The solution of this 1x1 problem is the dependent variable as a function
of the independent variable, y(t) (this function when substituted into Equations
1.1 and 1.2 satisfies these equations). This solution may be a mathematical
function, termed an analytical solution.

1



2 Ordinary and Partial Differential Equation Routines

To illustrate these ideas, we consider the 1x1 problem, from Braun1 (which
will be discussed subsequently in more detail)

dy
dt

= λe−αt y, y(t0) = y0 (1.3)(1.4)

where λ and α are positive constants.
Equation 1.3 is termed a first-order, linear, ordinary differential equation with

variable coefficients. These terms are explained below.

Term Explanation

Differential equation Equation 1.3 has a derivative dy/dt = f (y, t) = λe−αt y
Ordinary Equation 1.3 has only one independent variable, t, so that

the derivative dy/dt is a total or ordinary derivative
First-order The highest-order derivative is first order (dy/dt is

first order)
Linear y and its derivative dy/dt are to the first power; thus,

Equation 1.3 is also termed first degree (do not confuse
order and degree)

Variable coefficient The coefficient e−αt is a function of the independent
variable, t (if it were a function of the dependent
variable, y, Equation 1.3 would be nonlinear or not
first degree)

The analytical solution to Equations 1.3 and 1.4 is from Braun:1

y(t) = y0 exp
(

λ

α
(1 − exp(−αt))

)
, y(0) = y0 (1.5)

where exp(x) = ex. Equation 1.5 is easily verified as the solution to Equations
1.3 and 1.4 by substitution in these equations:

Terms in Substitution of Equation 1.5
Equations 1.3 and 1.4 in Equations 1.3 and 1.4

dy
dt

y0 exp

(
λ

α
(1 − exp(−αt))

)(
λ

α

)
(−exp(−αt))(−α)

= λy0 exp

(
λ

α
(1 − exp(−αt))

)
(exp(−αt))

−λe−αt y −λe−αt y0 exp

(
λ

α
(1 − exp(−αt))

)

= =
0 0

y(0) y0 exp

(
λ

α
(1 − exp(−α(0)))

)
= y0(e0) = y0

thus confirming Equation 1.5 satisfies Equations 1.3 and 1.4.
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As an example of a nxn problem (n ODEs in n unknowns), we will also
subsequently consider in detail the 2x2 system

dy1

dt
= a11 y1 + a12 y2 y1(0) = y10

dy2

dt
= a21 y1 + a22 y2 y2(0) = y20

(1.6)

The solution to Equations 1.6 is again the dependent variables, y1, y2, as a
function of the independent variable, t. Since Equations 1.6 are linear, constant
coefficient ODEs, their solution is easily derived, e.g., by assuming exponential
functions in t or by the Laplace transform. If we assume exponential functions

y1(t) = c1eλt

y2(t) = c2eλt
(1.7)

where c1, c2, and λ are constants to be determined, substitution of Equations
1.7 in Equations 1.6 gives

c1λeλt = a11c1eλt + a12c2eλt

c2λeλt = a21c1eλt + a22c2eλt

Cancellation of eλt gives a system of algebraic equations (this is the reason
assuming exponential solutions works in the case of linear, constant coefficient
ODEs)

c1λ = a11c1 + a12c2

c2λ = a21c1 + a22c2

or
(a11 − λ)c1 + a12c2 = 0

a21c1 + (a22 − λ)c2 = 0
(1.8)

Equations 1.8 are the 2x2 case of the linear algebraic eigenvalue problem

(A − λI)c = 0 (1.9)

where

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

an1 an2 · · · ann




I =




1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1
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c =




c1
c2
...

cn




0 =




0
0
...

0




n = 2 for Equations 1.8, and we use a bold faced symbol for a matrix or a
vector.

The preceding matrices and vectors are

A nxn coefficient matrix
I nxn identity matrix
c nx1 solution vector
0 nx1 zero vector

The reader should confirm that the matrices and vectors in Equation 1.9 have
the correct dimensions for all of the indicated operations (e.g., matrix addi-
tions, matrix-vector multiples).

Note that Equation 1.9 is a linear, homogeneous algebraic system (homoge-
neous means that the right-hand side (RHS) is the zero vector). Thus, Equation
1.9, or its 2x2 counterpart, Equations 1.8, will have nontrivial solutions (c �= 0)
if and only if (iff) the determinant of the coefficient matrix is zero, i.e.,

|A − λI| = 0 (1.10)

Equation 1.10 is the characteristic equation for Equation 1.9 (note that it is a
scalar equation). The values of λ that satisfy Equation 1.10 are the eigenvalues
of Equation 1.9. For the 2x2 problem of Equations 1.8, Equation 1.10 is

∣∣∣∣ a11 − λ a12
a21 a22 − λ

∣∣∣∣ = 0

or

(a11 − λ)(a22 − λ) − a21a12 = 0 (1.11)

Equation 1.11 is the characteristic equation or characteristic polynomial for
Equations 1.8; note that since Equations 1.8 are a 2x2 linear homogeneous
algebraic system, the characteristic equation (Equation 1.11) is a second-order
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polynomial. Similarly, since Equation 1.9 is a nxn linear homogeneous alge-
braic system, its characteristic equation is a nth-order polynomial.

Equation 1.11 can be factored by the quadratic formula

λ2 − (a11 + a22)λ + a11a22 − a21a12 = 0

λ1, λ2 = (a11 + a22) ±
√

(a11 + a22)2 − 4(a11a22 − a21a12)

2
(1.12)

Thus, as expected, the 2x2 system of Equations 1.8 has two eigenvalues.
In general, the nxn algebraic system, Equation 1.9, will have n eigenval-
ues, λ1, λ2, . . . , λn (which may be real or complex conjugates, distinct or
repeated).

Since Equations 1.6 are linear constant coefficient ODEs, their general so-
lution will be a linear combination of exponential functions, one for each
eigenvalue

y1 = c11eλ1t + c12eλ2t

y2 = c21eλ1t + c22eλ2t
(1.13)

Equations 1.13 have four constants which occur in pairs, one pair for each
eigenvalue. Thus, the pair [c11 c21]T is the eigenvector for eigenvalue λ1 while
[c12 c22]T is the eigenvector for eigenvalue λ2. In general, the nxn system of
Equation 1.9 will have a nx1 eigenvector for each of its n eigenvalues. Note
that the naming convention for any constant in an eigenvector, ci j , is the
ith constant for the j th eigenvalue. We can restate the two eigenvectors for
Equation 1.13 (or Equations 1.8) as

[
c11
c21

]
λ1

,
[

c12
c22

]
λ2

(1.14)

Finally, the four constants in eigenvectors (Equations 1.14) are related
through the initial conditions of Equations 1.6 and either of Equations 1.8

y10 = c11eλ10 + c12eλ20

y20 = c21eλ10 + c22eλ20
(1.15)

To simplify the analysis somewhat, we consider the special case a11 = a22 =
−a, a21 = a12 = b, where a and b are constants. Then from Equation 1.12,

λ1, λ2 = −2a ±
√

(2a)2 − 4(a2 − b2)

2
= −a ± b = −(a − b), −(a + b) (1.16)
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From the first of Equations 1.8 for λ = λ1

(a11 − λ1)c11 + a12c21 = 0

or

(−a + (a − b))c11 + bc21 = 0

c11 = c21

Similarly, for λ = λ2

(a11 − λ2)c12 + a12c22 = 0

or

(−a + (a + b))c12 + bc22 = 0

c12 = −c22

Substitution of these results in Equations 1.15 gives

y10 = c11 − c22

y20 = c11 + c22

or

c11 = y10 + y20

2
= c21

c22 = y20 − y10

2
= −c12

Finally, the solution from Equations 1.13 is

y1 = y10 + y20

2
eλ1t − y20 − y10

2
eλ2t

y2 = y10 + y20

2
eλ1t + y20 − y10

2
eλ2t

(1.17)

Equations 1.17 can easily be checked by substitution in Equations 1.6 (with
a11 = a22 = −a, a21 = a12 = b) and application of the initial conditions at
t = 0:
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dy1

dt
λ1

y10 + y20

2
eλ1t − λ2

y20 − y10

2
eλ2t

= −(a − b)
y10 + y20

2
eλ1t + (a + b)

y20 − y10

2
eλ2t

+ay1 +a
( y10 + y20

2
eλ1t − y20 − y10

2
eλ2t

)

−by2 −b
( y10 + y20

2
eλ1t + y20 − y10

2
eλ2t

)
= =
0 0

dy2

dt
λ1

y10 + y20

2
eλ1t + λ2

y20 − y10

2
eλ2t

= −(a − b)
y10 + y20

2
eλ1t − (a + b)

y20 − y10

2
eλ2t

+ay2 +a
( y10 + y20

2
eλ1t + y20 − y10

2
eλ2t

)

−by1 −b
( y10 + y20

2
eλ1t − y20 − y10

2
eλ2t

)
= =
0 0

For the initial conditions of Equations 1.6

y10 = y10 + y20

2
eλ10 − y20 − y10

2
eλ20 = y10

y20 = y10 + y20

2
eλ10 + y20 − y10

2
eλ20 = y20

as required.
The ODE problems of Equations 1.3, 1.4, and 1.6 along with their analytical

solutions, Equations 1.5 and 1.17, will be used subsequently to demonstrate
the use of the ODE integration routines and to evaluate the computed solu-
tions. Since these problems are quite modest (1x1 and 2x2, respectively), we
will also subsequently consider two problems with substantially more ODEs.
At the same time, these ODE systems will be considered as approximations
to partial differential equations (PDEs); in other words, we will use systems
of ODEs for the solution of PDEs.

1.2 Origin of ODE Integrators in the Taylor Series

In contrast to the analytical solutions presented previously (Equations 1.5 and
1.17), the numerical solutions we will compute are ordered pairs of numbers.
For example, in the case of Equation 1.3, we start from the pair (t0, y0) (the
initial condition of Equation 1.3) and proceed to compute paired values (ti , yi )

where i = 1, 2, . . . is an index indicating a position or point along the solution.
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y(t): Exact solution
yi(t): Numerical solution

1t0t
y0 = y(t0)

dy0 / dt

h

t

y(t)
yi(t)

y(t)

y1

y(t1)

yi+1 = yi + (dyi / dt)h
Stepping formula for the Euler method:

ei+1: Truncation error

e1

FIGURE 1.1
Stepping along the solution with Euler’s method.

The numerical integration is then a step-by-step algorithm going from the
solution point (ti , yi ) to the point (ti+1, yi+1).

This stepping procedure is illustrated in Figure 1.1 and can be represented
mathematically by a Taylor series:

yi+1 = yi + dyi

dt
h + d2 yi

dt2

h2

2!
+ · · · (1.18)

where h = ti+1 − ti . We can truncate this series after the linear term in h

yi+1 ≈ yi + dyi

dt
h (1.19)

and use this approximation to step along the solution from y0 to y1 (with
i = 0), then from y1 to y2 (with i = 1), etc. This is the famous Euler’s method.

This stepping procedure is illustrated in Figure 1.1 (with i = 0). Note that
Equation 1.19 is equivalent to projecting along a tangent line from i to i +1. In
other words, we are representing the solution, y(t), by a linear approximation.
As indicated in Figure 1.1, an error, εi , will occur, which in the case of Figure
1.1 appears to be excessive. However, this apparently large error is only for
purposes of illustration in Figure 1.1. By taking a small enough step, h, the
error can, at least in principle, be reduced to any acceptable level. To see this,
consider the difference between the exact solution, y(ti+1), and the approxi-
mate solution, yi+1, if h is halved in Figure 1.1 (note how the vertical difference
corresponding to εi is reduced). In fact, a major part of this book is devoted to
controlling the error, εi , to an acceptable level by varying h. εi is termed the
truncation error, which is a logical name since it results from truncating a
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Taylor series (Equation 1.18), in this case, to Equation 1.19. In other words, εi

is the truncation error for Euler’s method, Equation 1.19.
We could logically argue that the truncation error could be reduced (for a

given h) by including more terms in the Taylor, e.g., the second derivative
term (d2 yi/dt2)(h2/2!). Although this is technically true, there is a practical
problem. For the general ODE, Equation 1.1, we have only the first derivative
available

dyi

dt
= f (yi , ti )

The question then in using the second derivative term of the Taylor series
is “How do we obtain the second derivative, d2 yi/dt2?”. One answer would
be to differentiate the ODE, i.e.,

d2 y
dt2 = d

dt

(
dy
dt

)
= d f (y, t)

dt
= ∂ f

∂y
dy
dt

+ ∂ f
∂t

= ∂ f
∂y

f + ∂ f
∂t

(1.20)

Then we can substitute Equation 1.20 in Equation 1.18:

yi+1 = yi + fi h +
(

∂ f
∂y

f + ∂ f
∂t

)
i

h2

2!
(1.21)

where again subscript “i” means evaluated at point i .
As an example of the application of Equation 1.21, consider the model ODE

dy
dt

= f (y, t) = λy (1.22)

where λ is a constant. Then

fi = λyi(
∂ f
∂y

f + ∂ f
∂t

)
i
= λ (λyi )

(note: ∂ f /∂t = 0 since f = λy does not depend on t) and substitution in
Equation 1.21 gives

yi+1 = yi + λyi h + λ (λyi )
h2

2!
= yi (1 + λh + (λh)2/2!)

yi (1+λh+(λh)2/2!) is the Taylor series of yi eλh up to and including the h2 term,
but yi eλh is the analytical solution to Equation 1.22 with the initial condition
y(ti ) = yi for the integration step, h = ti+1 − ti . Thus, as stated previously,
Equation 1.21 fits the Taylor series of the analytical solution to Equation 1.22
up to and including the (d2 yi/dt2)(h2/2!) term.

Of course, we could, in principle, continue this process of including ad-
ditional terms in the Taylor series, e.g., using the derivative of the second
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derivative to arrive at the third derivative, etc. Clearly, however, the method
quickly becomes cumbersome (and this is for only one ODE, Equation 1.1).
Application of this Taylor series method to systems of ODEs involves a lot of
differentiation. (Would we want to apply it to a system of 100 or 1000 ODEs?
We think not.)

Ideally, we would like to have a higher-order ODE integration method
(higher than the first-order Euler method) without having to take derivatives
of the ODEs. Although this may seem like an impossibility, it can in fact be
done by the Runge Kutta (RK) method. In other words, the RK method can be
used to fit the numerical ODE solution exactly to an arbitrary number of terms
in the underlying Taylor series without having to differentiate the ODE. We will
investigate the RK method, which is the basis for the ODE integration routines
described in this book.

The other important characteristic of a numerical integration algorithm (in
addition to not having to differentiate the ODE) is a way of estimating the
truncation error, ε, so that the integration step, h, can be adjusted to achieve a
solution with a prescribed accuracy. This may also seem like an impossibility
since it would appear that in order to compute ε we need to know the exact
(analytical) solution. But if the exact solution is known, there would be no need
to calculate the numerical solution. The answer to this apparent contradiction
is the fact that we will calculate an estimate of the truncation error (and not the
exact truncation error which would imply that we know the exact solution). To
see how this might be done, consider computing a truncation error estimate
for the Euler method. Again, we return to the Taylor series (which is the
mathematical tool for most of the numerical analysis of ODE integration).
Now we will expand the first derivative dy/dt

dyi+1

dt
= dyi

dt
+ d2 yi

dt2

h
1!

+ · · · (1.23)

d2 yi/dt2 is the second derivative we require in Equation 1.18. If the Taylor
series in Equation 1.23 is truncated after the h term, we can solve for this
second derivative

d2 yi

dt2 =
dyi+1

dt
− dyi

dt
h

(1.24)

Equation 1.24 seems logical, i.e., the second derivative is a finite difference
(FD) approximation of the first derivative. Note that Equation 1.24 has the im-
portant property that we can compute the second derivative without having
to differentiate the ODE; rather, all we have to do is use the ODE twice, at
grid points i and i + 1. Thus, the previous differentiation of Equation 1.20 is
avoided. However, note also that Equation 1.24 gives only an approximation
for the second derivative since it results from truncating the Taylor series of
Equation 1.23. Fortunately, the approximation of Equation 1.24 will generally
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become increasingly accurate with decreasing h since the higher terms in h in
Equation 1.23 (after the point of truncation) will become increasingly smaller.

Substituting Equation 1.24 in Equation 1.18 (truncated after the h2 term)
gives

yi+1 = yi + dyi

dt
h + d2 yi

dt2

h2

2!

= yi + dyi

dt
h +

dyi+1

dt
− dyi

dt
h

h2

2!

= yi + dyi

dt
h +

(
dyi+1

dt
− dyi

dt

)
h
2!

= yi +
(

dyi+1

dt
+ dyi

dt

)
h
2!

(1.25)

Equation 1.25 is the well-known modified Euler method or extended Euler
method. We would logically expect that for a given h, Equation 1.25 will give
a more accurate numerical solution for the ODE than Equation 1.19. We will
later demonstrate that this is so in terms of some ODE examples, and we will
state more precisely how the truncation errors of Equations 1.19 and 1.25 vary
with h.

Note that Equation 1.25 uses the derivative dy/dt averaged at points i and
i +1, as illustrated in Figure 1.2. Thus, whereas the derivative at i in Figure 1.1

y(t): Exact solution
yi(t): Numerical solution

y0  =  y(t0)
0t

dy0 / dt

y1
p

1t

h

e1
p

t

y(t)
y(t)

dy1
p / dt

yi(t)
y1

c

e1
c

y(t1)

yi
p
+1 = yi + (dyi / dt)h

Stepping formulas:

hyi
c
+1 = yi + 

2

(dyi / dt) + (dyi
p
+1 / dt)

εi
p
+1,εi

c
+1: Truncation errors

FIGURE 1.2
Modified Euler method.
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is too large and causes the large overshoot of the numerical solution above
the exact solution (and thus, a relatively large value of εi ), the averaging of
the derivatives at i and i + 1 in Figure 1.2 reduces this overshoot (and the
truncation error is reduced from ε

p
i to εc

i ).
Equation 1.25 can be rearranged into a more useful form. If we assume

that the truncation error of Euler’s method, εi , is due mainly to the second
derivative term (d2 yi/dt2)(h2/2!) of Equation 1.18 (which will be the case if
the higher-order terms in Equation 1.18 are negligibly small), then

εi = d2 yi

dt2

h2

2!
=

dyi+1

dt
− dyi

dt
h

h2

2!
=

(
dyi+1

dt
− dyi

dt

)
h
2!

and Equation 1.25 can be written as a two-step algorithm:

yp
i+1 = yi + dyi

dt
h (1.26a)

εi =
(

dyp
i+1

dt
− dyi

dt

)
h
2!

(1.26b)

yc
i+1 = yi + dyi

dt
h + εi = yp

i+1 + εi (1.26c)

With a little algebra, we can easily show that yi+1 of Equation 1.25 and yp
i+1

of Equation 1.26c are the same. While Equation 1.25 and Equations 1.26c are
mathematically equivalent, Equations 1.26 have an advantage when used in
a computer program. Specifically, an algorithm that automatically adjusts h
to achieve a prescribed accuracy, tol, can be programmed in the following
steps:

1. Compute yp
i+1 by the Euler method, Equation 1.26a. The superscript p

in this case denotes a predicted value.
2. Compute the estimated error, εi , from Equation 1.26b. Note that

dyp
i+1/dt = f (yp

i+1, ti+1), where ti+1 = ti + h.
3. Pose the question is εi < tol? If no, reduce h and return to 1. If yes,

continue to 4.
4. Add εi from 3 to yp

i+1 to obtain yc
i+1 according to Equation 1.26c. The

superscript c denotes a corrected value.
5. Increment i, advance ti to ti+1 by adding h, go to 1. to take the next step

along the solution.

The algorithm of Equations 1.26 is termed a predictor-corrector method, which
we will subsequently discuss in terms of a computer program.

To conclude this introductory discussion of integration algorithms, we in-
troduce the RK notation. If we define k1 and k2 (termed Runge Kutta constants
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although they are not constant, but rather, vary along the solution) as

k1 = f (yi , ti )h (1.27a)

k2 = f (yi + k1, ti + h)h (1.27b)

the Euler method of Equation 1.19 can be written as (keep in mind dy/dt =
f (y, t))

yi+1 = yi + k1 (1.28)

and the modified Euler method of Equation 1.25 can be written

yi+1 = yi + k1 + k2

2
(1.29)

(the reader should confirm that Equation 1.25 and Equation 1.29 are the same).
Also, the modified Euler method written in terms of an explicit error esti-

mate, Equations 1.26, can be conveniently written in RK notation:

yp
i+1 = yi + k1 (1.30a)

εi = (k2 − k1)

2
(1.30b)

yc
i+1 = yi + k1 + (k2 − k1)

2
= yi + (k1 + k2)

2
(1.30c)

However, the RK method is much more than just a convenient system of
notation. As stated earlier, it is a method for fitting the underlying Taylor series
of the ODE solution to any number of terms without having to differentiate
the ODE (it requires only the first derivative in dy/dt = f (y, t) as we observe
in Equations 1.29 and 1.30). We next explore this important feature of the RK
method, which is the mathematical foundation of the ODE integrators to be
discussed subsequently.

1.3 The Runge Kutta Method

The RK method consists of a series of algorithms of increasing order. There
is only one first order RK method, the Euler method, which fits the underlying
Taylor series of the solution up to and including the first derivative term, as
indicated by Equation 1.19.

The second-order RK method is actually a family of second-order methods;
a particular member of this family is selected by choosing an arbitrary con-
stant in the general second-order RK formulas. The origin of these formulas is
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illustrated by the following development (based on the idea that the second-
order RK method fits the Taylor series up to and including the second deriva-
tive term, (d2 yi/dt2)(h2/2!)).

We start the analysis with a general RK stepping formula of the form

yi+1 = yi + c1k1 + c2k2 (1.31a)

where k1 and k2 are RK “constants” of the form

k1 = f (yi , ti )h (1.31b)

k2 = f (yi + a2k1(yi , ti ), ti + a2h)h = f (yi + a2 f (yi , ti )h, ti + a2h)h (1.31c)

and c1, c2 and a2 are constants to be determined.
If k2 from Equation 1.31c is expanded in a Taylor series in two variables,

k2 = f (yi + a2 f (yi , ti )h, ti + a2h)h

= [
f (yi , ti ) + fy(yi , ti )a2 f (yi , ti )h + ft(yi , ti )a2h

]
h + O(h3) (1.32)

Substituting Equations 1.31b and 1.32 in Equation 1.31a gives

yi+1 = yi + c1 f (yi , ti )h + c2[ f (yi , ti ) + fy(yi , ti )a2 f (yi , ti )h

+ ft(yi , ti )a2h]h + O(h3)

= yi + (c1 + c2) f (yi , ti )h + c2[ fy(yi , ti )a2 f (yi , ti )

+ ft(yi , ti )a2]h2 + O(h3) (1.33)

Note that Equation 1.33 is a polynomial in increasing powers of h; i.e., it has
the form of a Taylor series. Thus, if we expand yi+1 in a Taylor series around
yi , we will obtain a polynomial of the same form, i.e., in increasing powers
of h

yi+1 = yi + dyi

dt
h + d2 yi

dt2

h2

2!
+ O(h3)

= yi + f (yi , ti )h + d f (yi , ti )
dt

h2

2!
+ O(h3) (1.34)

where we have used dyi/dt = f (yi , ti ), i.e., the ODE we wish to integrate nu-
merically. To match Equations 1.33 and 1.34, term-by-term (with like powers
of h), we need to have [d f (yi , ti )/dt](h2/2!) in Equation 1.34 in the form of
fy(yi , ti )a2 f (yi , ti ) + ft(yi , ti )a2 in Equation 1.33.

If chain-rule differentiation is applied to d f (yi , ti )/dt

d f (yi , ti )
dt

= fy(yi , ti )
dyi

dt
+ ft(yi , ti ) = fy(yi , ti ) f (yi , ti ) + ft(yi , ti ) (1.35)
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Substitution of Equation 1.35 in Equation 1.34 gives

yi+1 = yi + f (yi , ti )h + [
fy(yi , ti ) f (yi , ti ) + ft(yi , ti )

] h2

2!
+ O(h3) (1.36)

We can now equate coefficients of like powers of h in Equations 1.33 and 1.36

Power of h Equation 1.33 Equation 1.36

h0 yi yi

h1 (c1 + c2) f (yi , ti ) f (yi , ti )

h2 c2

[
fy(yi , ti )a2 f (yi , ti ) + ft(yi , ti )a2

] [
fy(yi , ti ) f (yi , ti ) + ft(yi , ti )

] 1
2!

Thus, we conclude
c1 + c2 = 1

c2a2 = 1/2
(1.37)

This is a system of two equations in three unknowns or constants (c1, c2, a2);
thus, one constant can be selected arbitrarily (there are actually an infinite
number of second-order RK methods, depending on the arbitrary choice of
one of the constants in Equations 1.37). Here is one choice:

Choose c2 = 1/2
Other constants c1 = 1/2

a2 = 1
(1.38)

and the resulting second-order RK method is

yi+1 = yi + c1k1 + c2k2 = yi + k1 + k2

2
k1 = f (yi , ti )h

k2 = f (yi + a2k1(yi , ti ), ti + a2h)h = f (yi + f (yi , ti )h, ti + h)h

which is the modified Euler method, Equations 1.27, 1.28, and 1.29.
For the choice

Choose c2 = 1
Other constants c1 = 0

a2 = 1/2
(1.39)

the resulting second-order RK method is

yi+1 = yi + c1k1 + c2k2 = yi + k2 (1.40a)

k1 = f (yi , ti )h (1.40b)

k2 = f (yi + a2k1(yi , ti ), ti + a2h)h

= f (yi + (1/2) f (yi , ti )h, ti + (1/2)h)h

= f (yi + (1/2)k1, ti + (1/2)h)h (1.40c)
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y(t): Exact solution

yi(t): Numerical solution

t0

y0 = y(t0)

dy0 / dt
y1

c

t1

t

y(t)
y(t) dyp

1/2 / dt

yi(t)

yp
1/2

ε1
c

2
h

2
h

t1/2

y(t1)

yi
p
+1/2 = yi + (dyi / dt)h / 2

Stepping formulas:

yi
c
+1 = yi + (dyi

p
+1/2 / dt)h

εi
c
+1: Truncation error

FIGURE 1.3
Midpoint method.

which is the midpoint method illustrated in Figure 1.3. As the name suggests, an
Euler step is used to compute a predicted value of the solution at the midpoint
between points i and i + 1 according to Equation 1.40c. The corresponding
midpoint derivative (k2 of Equation 1.40c) is then used to advance the solution
from i to i + 1 (according to Equation 1.40a).

Another choice of the constants in Equation 1.37 is (Iserles,2 p. 84)

Choose c2 = 3/4
Other constants c1 = 1/4

a2 = 2/3
(1.41)

and therefore

yi+1 = yi + (1/4)k1 + (3/4)k2 (1.42a)

k1 = f (yi , ti )h (1.42b)

k2 = f (yi + (2/3)k1, ti + (2/3)h)h (1.42c)

The third-order RK formulas are derived in the same way, but the par-
tial differentiation is more complicated. Thus, we just state the beginning
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equations and the final result (Iserles,2 p. 40). The third order stepping for-
mula is

yi+1 = yi + c1k1 + c2k2 + c3k3 (1.43a)

The RK constants are

k1 = f (yi , ti )h (1.43b)

k2 = f (yi + a2k1, ti + a2h)h (1.43c)

k3 = f (yi + b3k1 + (a3 − b3)k2, ti + a3h)h (1.43d)

Four algebraic equations define the six constants c1, c2, c3, a2, a3, b3 (ob-
tained by matching the stepping formula, Equation 1.43a, with the Taylor
series up to and including the term (d3 yi/dt3)(h3/3!)

c1 + c2 + c3 = 1 (1.43e)

c2a2 + c3a3 = 1/2 (1.43f)

c2a2
2 + c3a2

3 = 1/3 (1.43g)

c3(a3 − b3)a2 = 1/6 (1.43h)

To illustrate the use of Equations 1.43e to 1.43h, we can take c2 = c3 = 3
8 ,

and from Equation 1.43e, c1 = 1 − 3
8 − 3

8 = 2
8 . From Equation 1.43f

(3/8)a2 + (3/8)a3 = 1/2

or a2 = 4
3 − a3. From Equation 1.43g,

(3/8)(4/3 − a3)
2 + (3/8)a2

3 = 1/3

or a3 = 2
3 (by the quadratic formula). Thus, a2 = 4

3 − 2
3 = 2

3 , and from Equation
1.43h,

(3/8)(2/3 − b3)2/3 = 1/6

or b3 = 0.
This particular third-order Nystrom method (Iserles,2 p. 40) is therefore

yi+1 = yi + (2/8)k1 + (3/8)k2 + (3/8)k3 (1.44a)

k1 = f (yi , ti )h (1.44b)

k2 = f (yi + (2/3)k1, ti + (2/3)h)h (1.44c)

k3 = f (yi + (2/3)k2, ti + (2/3)h)h (1.44d)

We next consider some MATLAB code which implements the Euler method
of Equation 1.28, the modified Euler method of Equations 1.30, the second-
order RK of Equations 1.42, and the third-order RK of Equations 1.44.
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The objective is to investigate the accuracy of these RK methods in computing
solutions to an ODE test problem.

1.4 Accuracy of RK Methods

We start with the numerical solution of a single ODE, Equation 1.3, subject
to initial condition Equation 1.4, by the Euler and modified Euler methods,
Equation 1.28 and Equations 1.30. The analytical solution, Equation 1.5, can
be used to calculate the exact errors in the numerical solutions.

Equation 1.3 models the growth of tumors, and this important application
is first described in the words of Braun1 (the dependent variable in Equation
1.3 is changed from “y” to “V” corresponding to Braun’s notation where V
denotes tumor volume).

It has been observed experimentally that “free living” dividing cells,
such as bacteria cells, grow at a rate proportional to the volume of the
dividing cells at that moment. Let V(t) denote the volume of the dividing
cells at time t. Then,

dV
dt

= λV (1.45)

for some positive constant λ. The solution of Equation 1.45 is

V(t) = V0eλ(t−t0) (1.46)

where V0 is the volume of dividing cells at the initial time t0. Thus, free
living dividing cells grow exponentially with time. One important conse-
quence of Equation 1.46 is that the volume of the cells keeps doubling
every time interval of length ln 2/λ.

On the other hand, solid tumors do not grow exponentially with time.
As the tumor becomes larger, the doubling time of the total tumor vol-
ume continuously increases. Various researchers have shown that the data
for many solid tumors is fitted remarkably well, over almost a 1000-fold
increase in tumor volume, by the equation (previously Equation 1.5)

V(t) = V0 exp

(
λ

α
(1 − exp(−αt))

)
(1.47)

where exp(x) = ex , and λ and α are positive constants.
Equation 1.47 is usually referred to as a Gompertzjan relation. It says

that the tumor grows more and more slowly with the passage of time,
and that it ultimately approaches the limiting volume V0eλ/α . Medical
researchers have long been concerned with explaining this deviation from
simple exponential growth. A great deal of insight into this problem can be
gained by finding a differential equation satisfied by V(t). Differentiating
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Equation 1.47 gives

dV
dt

= V0λ exp(−αt) exp

(
λ

α
(1 − exp(−αt))

)

= λe−αt V (1.48)

(formerly Equation 1.3).
Two conflicting theories have been advanced for the dynamics of tumor

growth. They correspond to the two arrangements

dV
dt

= (λe−αt)V (1.48a)

dV
dt

= λ(e−αt)V (1.48b)

of differential Equation 1.48. According to the first theory, the retarding
effect of tumor growth is due to an increase in the mean generation time
of the cells, without a change in the proportion of reproducing cells. As
time goes on, the reproducing cells mature, or age, and thus divide more
slowly. This theory corresponds to the bracketing of Equation 1.48a.

The bracketing of Equation 1.48b suggests the mean generation time
of the dividing cells remains constant, and the retardation of growth is
due to a loss in reproductive cells in the tumor. One possible explana-
tion for this is that a necrotic region develops in the center of the tumor.
This necrosis appears at a critical size for a particular type of tumor, and
thereafter, the necrotic “core” increases rapidly as the total tumor mass
increases. According to this theory, a necrotic core develops because in
many tumors the supply of blood, and thus of oxygen and nutrients, is al-
most completely confined to the surface of the tumor and a short distance
beneath it. As the tumor grows, the supply of oxygen to the central core
by diffusion becomes more and more difficult, resulting in the formation
of a necrotic core.

We can note the following interesting ideas about this problem:

• Equation 1.48 is a linear, variable coefficient ODE; it can also be consid-
ered to have a variable eigenvalue.

• The application of mathematical analysis to tumor dynamics apparently
started with a “solution” to an ODE, i.e., Equation 1.47.

• To gain improved insight into tumor dynamics, the question was posed
“Is there an ODE corresponding to Equation 1.47?”

• Once an ODE was found (Equation 1.48), it helped explain why the
solution, Equation 1.47, represents tumor dynamics so well.

• This is a reversal of the usual process of starting with a differential equa-
tion model, then using the solution to explain the performance of the
problem system.

A MATLAB program that implements the solution of Equation 1.48 using
the Euler and modified Euler methods, Equations 1.28 and 1.30, follows:
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%
% Program 1.1
% Tumor model of eqs. (1.47), (1.48)
%
% Model parameters

V0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

V1=V0;
V2=V0;

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t Ve V1 errV1 estV1

V2 errV2\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

V1b=V1;
V2b=V2;
tb=t;

%
% RK constant k1

k11=lambda*exp(-alpha*t)*V1*h;
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k12=lambda*exp(-alpha*t)*V2*h;
%
% RK constant k2

V1=V1b+k11;
V2=V2b+k12;
t=tb+h;

k22=lambda*exp(-alpha*t)*V2*h;
%
% RK step

V2=V2b+(k12+k22)/2.0;
t=tb+h;

end
%
% Print solutions and errors

Ve=V0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
errV1=V1-Ve;
errV2=V2-Ve;
estV1=V2-V1;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,Ve,V1,errV1,estV1,V2,errV2);
%
% Continue integration

end
%
% Next case

end

Program 1.1
MATLAB program for the integration of Equation 1.48 by the modified Euler
method of Equations 1.28 and 1.30

We can note the following points about Program 1.1:

• The initial condition and the parameters of Equation 1.48 are first defined
(note that % defines a comment in MATLAB):

%
% Model parameters

V0=1.0;
lambda=1.0;
alpha=1.0;

• The program then steps through four cases corresponding to the inte-
gration steps h = 1.0, 0.1, 0.01, 0.001:

%
% Step through cases

for ncase=1:4
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%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

For each h, the corresponding number of integration steps is nsteps.
Thus, the product (h)(nsteps) = 1 unit in t for each output from the
program; i.e., the output from the program is at t = 0, 1, 2, . . . , 10.

• For each case, the initial and final values of t are defined, i.e., t = 0, t f =
10, and the initial condition, V(0) = V0 is set to start the solution:

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

V1=V0;
V2=V0;

Two initial conditions are set, one for the Euler solution, computed as
V1, and one for the modified Euler solution, V2 (subsequently, we will
program the solution vector, in this case [V1 V2]T , as a one-dimensional
(1D) array).

• A heading indicating the integration step, h, and the two numerical
solutions is then displayed. “. . . ” indicates a line is to be continued on
the next line. (Note: . . . does not work in a character string delineated by
single quotes, so the character string in the second fprintf statement has
been placed on two lines in order to fit within the available page width;
to execute this program, the character string should be returned to one
line.)

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t Ve V1 errV1 estV1

V2 errV2\n')

• A while loop then computes the solution until the final time, t f , is reached:

%
% Continue integration

while t<0.999*tf
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Of course, at the beginning of the execution, t = 0 so the while loop
continues.

• nsteps Euler and modified Euler steps are then taken:

%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

V1b=V1;
V2b=V2;
tb=t;

At each point along the solution (point i), the solution is stored for sub-
sequent use in the numerical integration.

• The first RK constant, k1, is then computed for each dependent variable
in [V1 V2)]T according to Equation 1.27a:

%
% RK constant k1

k11=lambda*exp(-alpha*t)*V1*h;
k12=lambda*exp(-alpha*t)*V2*h;

Note that we have used the RHS of the ODE, Equation 1.48, in computing
k1. k11 is k1 for V1, and k12 is k1 for V2. Subsequently, the RK constants
will be programmed as 1D arrays, e.g., [k1(1) k1(2)]T .

• The solution is then advanced from the base point according to Equation
1.28:

%
% RK constant k2

V1=V1b+k11;
V2=V2b+k12;
t=tb+h;

k22=lambda*exp(-alpha*t)*V2*h;

The second RK constant, k2 for V2, is then computed according to Equa-
tion 1.27b. At the same time, the independent variable, t, is advanced.

• The modified Euler solution, V2, is then computed according to Equation
1.29:

%
% RK step

V2=V2b+(k12+k22)/2.0;
t=tb+h;

end

The advance of the independent variable, t, was done previously and is
therefore redundant; it is done again just to emphasize the advance in t
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for the modified Euler method. The end statement ends the loop of nsteps
steps, starting with

for i=1:nsteps

• The exact solution, Ve , is computed from Equation 1.47. The exact error
in the Euler solution, errV1, and in the modified Euler solution, errV2,
are then computed. Finally, the difference in the two solutions, estV1 =
V2− V1, is computed as an estimate of the error in V1. The independent
variable, t, the two dependent variables, V1, V2, and the three errors,
errV1, errV2, estV1, are then displayed.

%
% Print solutions and errors

Ve=V0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
errV1=V1-Ve;
errV2=V2-Ve;
estV1=V2-V1;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f

%15.10f\n',...t,Ve,V1,errV1,estV1,V2,errV2);

The output from the fprintf statement is considered subsequently.
• The while loop is then terminated, followed by the end of the for loop

that sets ncase:

%
% Continue integration

end
%
% Next case

end

We now consider the output from this program listed below (reformatted
slightly to fit on a printed page):

h = 1.000

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 2.0000 0.1184036125 -0.1321205588
2.0 2.3742 2.7358 0.3615489626 -0.3514091013
3.0 2.5863 3.1060 0.5197432882 -0.4929227741
4.0 2.6689 3.2606 0.5916944683 -0.5573912375
5.0 2.7000 3.3204 0.6203353910 -0.5830821148
6.0 2.7116 3.3427 0.6311833526 -0.5928173392
7.0 2.7158 3.3510 0.6352171850 -0.5964380611
8.0 2.7174 3.3541 0.6367070277 -0.5977754184
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9.0 2.7179 3.3552 0.6372559081 -0.5982681335
10.0 2.7182 3.3556 0.6374579380 -0.5984494919

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8679 -0.0137169464
2.0 2.3742 2.3843 0.0101398613
3.0 2.5863 2.6131 0.0268205142
4.0 2.6689 2.7033 0.0343032307
5.0 2.7000 2.7373 0.0372532762
6.0 2.7116 2.7499 0.0383660134
7.0 2.7158 2.7546 0.0387791239
8.0 2.7174 2.7563 0.0389316092
9.0 2.7179 2.7569 0.0389877746

10.0 2.7182 2.7572 0.0390084461

h = 0.100

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 1.8994 0.0178364041 -0.0178773733
2.0 2.3742 2.4175 0.0433341041 -0.0430037365
3.0 2.5863 2.6438 0.0575343031 -0.0569959440
4.0 2.6689 2.7325 0.0635808894 -0.0629558472
5.0 2.7000 2.7660 0.0659265619 -0.0652682467
6.0 2.7116 2.7784 0.0668064211 -0.0661356782
7.0 2.7158 2.7829 0.0671324218 -0.0664570816
8.0 2.7174 2.7846 0.0672526658 -0.0665756310
9.0 2.7179 2.7852 0.0672969439 -0.0666192852

10.0 2.7182 2.7855 0.0673132386 -0.0666353503

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8816 -0.0000409693
2.0 2.3742 2.3745 0.0003303677
3.0 2.5863 2.5868 0.0005383591
4.0 2.6689 2.6696 0.0006250422
5.0 2.7000 2.7007 0.0006583152
6.0 2.7116 2.7122 0.0006707429
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7.0 2.7158 2.7165 0.0006753402
8.0 2.7174 2.7180 0.0006770348
9.0 2.7179 2.7186 0.0006776587

10.0 2.7182 2.7188 0.0006778883

h = 0.010

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 1.8835 0.0018696826 -0.0018697473
2.0 2.3742 2.3786 0.0044269942 -0.0044231149
3.0 2.5863 2.5921 0.0058291952 -0.0058231620
4.0 2.6689 2.6754 0.0064227494 -0.0064158254
5.0 2.7000 2.7067 0.0066525021 -0.0066452372
6.0 2.7116 2.7183 0.0067386119 -0.0067312197
7.0 2.7158 2.7226 0.0067705073 -0.0067630680
8.0 2.7174 2.7242 0.0067822704 -0.0067748139
9.0 2.7179 2.7247 0.0067866019 -0.0067791389

10.0 2.7182 2.7249 0.0067881959 -0.0067807306

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8816 -0.0000000647
2.0 2.3742 2.3742 0.0000038793
3.0 2.5863 2.5863 0.0000060332
4.0 2.6689 2.6690 0.0000069239
5.0 2.7000 2.7000 0.0000072649
6.0 2.7116 2.7116 0.0000073922
7.0 2.7158 2.7158 0.0000074392
8.0 2.7174 2.7174 0.0000074566
9.0 2.7179 2.7180 0.0000074629

10.0 2.7182 2.7182 0.0000074653

h = 0.001

Euler method

t Ve V1 errV1 estV1
1.0 1.8816 1.8818 0.0001878608 -0.0001878611
2.0 2.3742 2.3747 0.0004436596 -0.0004436202
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3.0 2.5863 2.5868 0.0005836997 -0.0005836386
4.0 2.6689 2.6696 0.0006429444 -0.0006428744
5.0 2.7000 2.7007 0.0006658719 -0.0006657985
6.0 2.7116 2.7122 0.0006744643 -0.0006743896
7.0 2.7158 2.7165 0.0006776469 -0.0006775717
8.0 2.7174 2.7180 0.0006788206 -0.0006787453
9.0 2.7179 2.7186 0.0006792528 -0.0006791774

10.0 2.7182 2.7188 0.0006794118 -0.0006793364

modified Euler method

t Ve V2 errV2
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 0.0000000394
3.0 2.5863 2.5863 0.0000000610
4.0 2.6689 2.6689 0.0000000700
5.0 2.7000 2.7000 0.0000000734
6.0 2.7116 2.7116 0.0000000747
7.0 2.7158 2.7158 0.0000000751
8.0 2.7174 2.7174 0.0000000753
9.0 2.7179 2.7179 0.0000000754

10.0 2.7182 2.7182 0.0000000754

We can note the following points about this output:

• Considering first the output for the Euler method at t = 1:

h Ve V1 errV1 estV1 V1 + estV1

1 1.8816 2.0000 0.1184036125 −0.1321205588 1.8679
0.1 1.8816 1.8994 0.0178364041 −0.0178773733 1.8815
0.01 1.8816 1.8835 0.0018696826 −0.0018697473 1.8816
0.001 1.8816 1.8818 0.0001878608 −0.0001878611 1.8816

We can note the following points for this output:
— The exact error, errV1, decreases linearly with integration step, h.

For example, when h is decreased from 0.01 to 0.001, errV1 decreases
from 0.0018696826 to 0.0001878608. Roughly speaking, as the decimal
point in h moves one place, the decimal point in errV1 moves one
place. However, this is true only when h becomes small (so that
higher-order terms in the underlying Taylor series become negligibly
small).

— Thus, the error in the Euler method is proportional to h

errV1 = Ch1
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where C is a constant. The Euler method is therefore termed first order
in h or first order correct or of order h, which is usually designated as

errV1 = O(h)

where “O” denotes “of order.”
— The estimated error, estV1 is also first order in h (note again, that as h

is decreased by a factor of 1/10, estV1 decreases by a factor of 1/10).
Furthermore, the estimated error, estV1, approaches the exact error,
errV1 for small h. This is an important point since the estimated error
can be computed without knowing the exact solution; in other words, we
can estimate the error in the numerical solution without knowing the exact
solution. The estimated error, estV1 = V2− V1 is the same as εi given
by Equation 1.26b and discussed in words following Equations 1.26.

— If the estimated error, estV1, is added as a correction to the numeri-
cal solution, V1, the corrected solution (in the last column) is much
closer to the exact solution, Ve . Thus, the estimated error can not only
be used to judge the accuracy of the numerical solution, and thereby
used to decrease h if necessary to meet a specified error tolerance
(see again Equation 1.26b and the subsequent discussion), but the
estimated error can be used as a correction for the numerical solution
to obtain a more accurate solution. We will make use of these impor-
tant features of the estimated error in the subsequent routines that
automatically adjust the step, h, to achieve a specified accuracy.

• Considering next the output for the modified Euler method at t = 1:

h Ve V2 errV2

1 1.8816 1.8679 −0.0137169464
0.1 1.8816 1.8816 −0.0000409693
0.01 1.8816 1.8816 −0.0000000647
0.001 1.8816 1.8816 −0.0000000003

We can note the following points for this output:
— The exact error for the modified Euler method, errV2, is substantially

smaller than the error for the Euler method, errV1 and estV1. This is
to be expected since the modified Euler method includes the second
derivative term in the Taylor series, (d2 y/dt2)(h2/2!), while the Euler
method includes only the first derivative term, (dy/dt)(h/1!).

— In other words, the exact error, errV2, decreases much faster with h
than does errV1. The order of this decrease is difficult to assess from
the solution at t = 1. For example, when h is decreased from 0.1 to
0.01, the number of zeros after the decimal point increases from four
(−0.000040969) to seven (−0.0000000647) (or roughly, a decrease of
1/1000). But when h decreases from 0.01 to 0.001, the number of zeros
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after the decimal point only increases from seven (−0.0000000647) to
nine (−0.0000000003) (or roughly, a decrease of 1/100). Thus, is the
order of the modified Euler method O(h2) or O(h3)?

• We come to a somewhat different conclusion if we consider the modified
Euler solution at t = 10:

h Ve V2 errV2

1 2.7182 2.7572 0.0390084461
0.1 2.7182 2.7188 0.0006778883
0.01 2.7182 2.7182 0.0000074653
0.001 2.7182 2.7182 0.0000000754

We can note the following points for this output:
— The error, errV2, now appears to be second order. For example, when h

is reduced from 0.1 to 0.01, the error decreases from 0.0006778883 to
0.0000074653, a decrease of approximately 1/100. Similarly, when h
is reduced from 0.01 to 0.001, the error decreases from 0.0000074653
to 0.0000000754, again a decrease of approximately 1/100. Thus, we
can conclude that at least for this numerical output at t = 10, the
modified Euler method appears to be second order correct, i.e.,

errV2 = O(h2)

We shall generally find this to be the case (the modified Euler method
is second order), although, clearly, there can be exceptions (i.e., the
output at t = 1).

• Finally, we can come to some additional conclusions when comparing
the output for the Euler and modified Euler methods:
— Generally, for both methods, the accuracy of the numerical solutions

can be improved by decreasing h. This process is termed h refinement,
and is an important procedure in ODE library integration routines,
i.e., decreasing h to improve the solution accuracy.

— An error in the numerical solution, in this case estV1, can be estimated
by subtracting the solutions from two methods of different orders,
i.e., estV1 = V2− V1. This estimated error can then be used to adjust
h to achieve a solution of prescribed accuracy (see Equations 1.26).
This procedure of subtracting solutions of different order is termed
p refinement since generally the order of the approximations is stated
in terms of a variable “p”, i.e.,

error = O(h p)

In the present case, p = 1 for the Euler method (it is first order
correct), and p = 2 for the modified Euler method (it is second order
correct). Thus, by using the p refinement of increasing p from 1 to 2,
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we can estimate the error in the numerical solution (without having
to know the exact solution), and thereby make some adjustments in
h to achieve a specified accuracy.

— The integration errors we have been considering are called truncation
errors since they result from truncation of the underlying Taylor series
(after (dy/dt)(h/1!) and (d2 y/dt2)(h2/2!) for the Euler and modified
Euler methods, respectively).

— The preceding analysis and conclusions are based on a sufficiently
small value of h that the higher-order terms (in h) in the Taylor series
(after the point of truncation) are negligibly small.

— We have not produced a rigorous proof of O(h) and O(h2) for the Eu-
ler method and modified Euler method. Rather, all of the preceding
analysis was through the use of a single, linear ODE, Equation 1.48.
Thus, we cannot conclude that these order conditions are generally
true (for any system of ODEs). Fortunately, they have been observed
to be approximately correct for many ODE systems, both linear and
nonlinear.

— Higher-order RK algorithms that fit more of the terms of the underly-
ing Taylor series are available (consider the third-order RK method
of Equations 1.44). The preceding error analysis can be applied to
them in the same way, and we will now consider again the results
for the numerical solution of Equation 1.48. In other words, we can
consider h and p refinement for higher-order RK methods.

— The higher order of the modified Euler method, O(h2), relative to
the Euler method, O(h), was achieved through additional compu-
tation. Specifically, in the preceding MATLAB program, the Euler
method required only one derivative evaluation (use of Equation 1.48)
for each step along the solution, while the modified Euler method re-
quired two derivative evaluations for each step along the solution. In
other words, we pay a “computational price” of additional derivative
evaluations when using higher-order methods (that fit more of the
underlying Taylor series). However, this additional computation is
usually well worth doing (consider the substantially more accurate
solution of Equation 1.48 when using the modified Euler method
relative to the Euler method, and how much more quickly the er-
ror dropped off with decreasing h, i.e., O(h2) vs. O(h) ). Generally,
an increase in the order of the method of one (e.g., O(h) to O(h2))
requires one additional derivative evaluation for order up to and in-
cluding four; beyond fourth order, increasing the order of accuracy
by one will require more than one additional derivative evaluation
(we shall observe this for a fifth-order RK method to be discussed
subsequently).

— In all of the preceding discussion, we have assumed that the solution
to an ODE system can be represented by a Taylor series (or a truncated
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Taylor series), which is basically a polynomial in h. Of course, this
does not have to be the case, but we are assuming that in using
numerical ODE integration algorithms, for sufficiently small h, the
Taylor series approximation of the solution is sufficiently accurate
for the given ODE application.

— The RK method is particularly attractive since it can be formulated
for increasing orders (more terms in the Taylor series) without having
to differentiate the differential equation to produce the higher-order
derivatives required in the Taylor series. Thus, all we have to do
in the programming of an ODE system is numerically evaluate the
derivatives defined by the ODEs.

— As we shall see in subsequent examples, the RK method can be ap-
plied to the nxn problem (n ODEs in n unknowns) as easily as we
applied it to the 1x1 problem of Equation 1.48. Thus, it is a general
procedure for the solution of systems of ODEs of virtually any order
(nxn) and complexity (which is why it is so widely used). In other
words, the RK algorithms (as well as other well-established integra-
tion algorithms) are a powerful tool in the use of ODEs in science
and engineering; we shall see that the same is also true for PDEs.

We now conclude this section by considering the errors in the numerical
solution of Equation 1.48 with a (2, 3) RK pair (i.e., O(h2) and O(h3) in analogy
with the (1, 2) pair of the Euler and modified Euler methods), and then a (4, 5)

pair (O(h4) and O(h5)). This error analysis will establish that the expected
order conditions are realized and also will provide two higher RK pairs that
we can then put into library ODE integration routines.

The (2, 3) pair we considered previously (Equations 1.42 and 1.44) is coded
in the following program. Here we have switched back from the dependent
variable V used previously in Equation 1.48 to the more commonly used y in
Equation 1.3. Also, y2 is the solution of Equation 1.3 using the second-order
RK of Equations 1.42 while y3 is the solution using the third-order RK of
Equations 1.44.

%
% Program 1.2
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
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%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y2=y0;
y3=y0;

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y2 erry2 esty2

y3 erry3\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

y2b=y2;
y3b=y3;
tb=t;

%
% RK constant k1

k12=lambda*exp(-alpha*t)*y2*h;
k13=lambda*exp(-alpha*t)*y3*h;

%
% RK constant k2

y2=y2b+(2.0/3.0)*k12;
y3=y3b+(2.0/3.0)*k13;
t=tb +(2.0/3.0)*h;

k22=lambda*exp(-alpha*t)*y2*h;
k23=lambda*exp(-alpha*t)*y3*h;

%
% RK integration K3

y3=y3b+(2.0/3.0)*k23;
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t=tb +(2.0/3.0)*h;
k33=lambda*exp(-alpha*t)*y3*h;

%
% RK step

y2=y2b+(1.0/4.0)*k12+(3.0/4.0)*k22;
y3=y3b+(1.0/4.0)*k13+(3.0/8.0)*k23+(3.0/8.0)*k33;
t=tb+h;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry2=y2-ye;
erry3=y3-ye;
esty2=y3-y2;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y2,erry2,esty2,y3,erry3);
%
% Continue integration

end
%
% Next case

end

Program 1.2
Program for the integration of Equation 1.48 by the RK (2, 3) pair of Equations
1.42 and 1.44

Program 1.2 closely parallels Program 1.1. The only essential difference is
the coding of the RK (2, 3) pair of Equations 1.42 and 1.44 in place of the RK
(1, 2) pair of Equations 1.28 and 1.29. We can note the following points about
Program 1.2:

• Initial condition (Equation 1.4) is again set for y2 and y3 to start the
numerical solutions:

%
% Initial condition

y2=y0;
y3=y0;

• The integration proceeds with the outer while loop (that eventually
reaches the final time, t f ), and an inner for loop that takes nsteps RK
steps for each output. For each pass through the inner loop, the solution
is stored at the base point for subsequent use in the RK formulas:

%
% Continue integration

while t<0.999*tf
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%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

y2b=y2;
y3b=y3;
tb=t;

• The RK constant k1 is computed for each dependent variable by using
Equation 1.3 (k12 for the k1 of y2 and k13 for the k1 of y3):

%
% RK constant k1

k12=lambda*exp(-alpha*t)*y2*h;
k13=lambda*exp(-alpha*t)*y3*h;

• The solution is then advanced from the base point using a 2
3 weighting

applied to k1 and h (in accordance with Equations 1.42 and 1.44):

%
% RK constant k2

y2=y2b+(2.0/3.0)*k12;
y3=y3b+(2.0/3.0)*k13;
t=tb +(2.0/3.0)*h;

k22=lambda*exp(-alpha*t)*y2*h;
k23=lambda*exp(-alpha*t)*y3*h;

This advance of the dependent and independent variables sets the stage
for the calculation of k2 (again, using Equation 1.3).

• k3 is computed for y3 (it is not required for y2):

%
% RK integration K3

y3=y3b+(2.0/3.0)*k23;
t=tb +(2.0/3.0)*h;

k33=lambda*exp(-alpha*t)*y3*h;

• All the required RK constants have now been computed, and the solu-
tions can be advanced to the next point using the stepping formulas:

%
% RK step

y2=y2b+(1.0/4.0)*k12+(3.0/4.0)*k22;
y3=y3b+(1.0/4.0)*k13+(3.0/8.0)*k23+(3.0/8.0)*k33;
t=tb+h;

end

Note that the stepping formula for y2 does not include k3. The end state-
ment concludes the for loop that is executed nsteps times.
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• The solutions, y2 and y3, and associated errors are then displayed:

%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry2=y2-ye;
erry3=y3-ye;
esty2=y3-y2;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f

%15.10f\n',...t,ye,y2,erry2,esty2,y3,erry3);

• Finally, the while loop is concluded, followed by the for loop that sets the
values of h, and the initial and final values of t:

%
% Continue integration

end
%
% Next case

end

• Note that Equation 1.3 was used twice to compute k1 and k2 for y2 (two
derivative evaluations), and Equation 1.3 was used three times to com-
pute k1, k2, and k3 for y3 (three derivative evaluations). This again illus-
trates the additional computation required, in this case, the calculation
of k3, to achieve higher-order results (O(h3) rather than O(h2)). This
improved accuracy is evident in the following output from Program 1.2.

The output from Program 1.2 is listed below (again, with some minor for-
matting to fit on a printed page):

h = 1.000

Second order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8918 0.0101750113 -0.0185221389
2.0 2.3742 2.3995 0.0252529307 -0.0352289432
3.0 2.5863 2.6170 0.0307095187 -0.0408693758
4.0 2.6689 2.7014 0.0324302424 -0.0425724266
5.0 2.7000 2.7330 0.0330043494 -0.0431262652
6.0 2.7116 2.7448 0.0332064307 -0.0433188969
7.0 2.7158 2.7491 0.0332794779 -0.0433881911
8.0 2.7174 2.7507 0.0333061722 -0.0434134670
9.0 2.7179 2.7513 0.0333159682 -0.0434227360

10.0 2.7182 2.7515 0.0333195687 -0.0434261419
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Third order RK

t ye y3 erry3
1.0 1.8816 1.8732 -0.0083471276
2.0 2.3742 2.3642 -0.0099760125
3.0 2.5863 2.5761 -0.0101598572
4.0 2.6689 2.6588 -0.0101421842
5.0 2.7000 2.6899 -0.0101219158
6.0 2.7116 2.7014 -0.0101124662
7.0 2.7158 2.7057 -0.0101087132
8.0 2.7174 2.7073 -0.0101072948
9.0 2.7179 2.7078 -0.0101067678

10.0 2.7182 2.7081 -0.0101065733

h = 0.100

Second order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8819 0.0003179977 -0.0003270335
2.0 2.3742 2.3748 0.0005660244 -0.0005762943
3.0 2.5863 2.5869 0.0006477190 -0.0006581264
4.0 2.6689 2.6696 0.0006733478 -0.0006837363
5.0 2.7000 2.7007 0.0006819708 -0.0006923405
6.0 2.7116 2.7122 0.0006850226 -0.0006953838
7.0 2.7158 2.7165 0.0006861284 -0.0006964862
8.0 2.7174 2.7181 0.0006865329 -0.0006968894
9.0 2.7179 2.7186 0.0006866814 -0.0006970374

10.0 2.7182 2.7188 0.0006867360 -0.0006970918

Third order RK

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000090358
2.0 2.3742 2.3742 -0.0000102699
3.0 2.5863 2.5862 -0.0000104074
4.0 2.6689 2.6689 -0.0000103885
5.0 2.7000 2.7000 -0.0000103698
6.0 2.7116 2.7115 -0.0000103611
7.0 2.7158 2.7158 -0.0000103577
8.0 2.7174 2.7174 -0.0000103564
9.0 2.7179 2.7179 -0.0000103560

10.0 2.7182 2.7181 -0.0000103558
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h = 0.010

Second Order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000035779 -0.0000035865
2.0 2.3742 2.3742 0.0000062016 -0.0000062112
3.0 2.5863 2.5863 0.0000070634 -0.0000070731
4.0 2.6689 2.6690 0.0000073355 -0.0000073451
5.0 2.7000 2.7000 0.0000074275 -0.0000074371
6.0 2.7116 2.7116 0.0000074601 -0.0000074697
7.0 2.7158 2.7158 0.0000074720 -0.0000074815
8.0 2.7174 2.7174 0.0000074763 -0.0000074859
9.0 2.7179 2.7180 0.0000074779 -0.0000074875

10.0 2.7182 2.7182 0.0000074785 -0.0000074880

Third order RK

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000000085
2.0 2.3742 2.3742 -0.0000000096
3.0 2.5863 2.5863 -0.0000000096
4.0 2.6689 2.6689 -0.0000000096
5.0 2.7000 2.7000 -0.0000000096
6.0 2.7116 2.7116 -0.0000000096
7.0 2.7158 2.7158 -0.0000000095
8.0 2.7174 2.7174 -0.0000000095
9.0 2.7179 2.7179 -0.0000000095

10.0 2.7182 2.7182 -0.0000000095

h = 0.001

Second order RK

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000362 -0.0000000362
2.0 2.3742 2.3742 0.0000000626 -0.0000000626
3.0 2.5863 2.5863 0.0000000713 -0.0000000713
4.0 2.6689 2.6689 0.0000000740 -0.0000000740
5.0 2.7000 2.7000 0.0000000749 -0.0000000749
6.0 2.7116 2.7116 0.0000000752 -0.0000000753
7.0 2.7158 2.7158 0.0000000754 -0.0000000754
8.0 2.7174 2.7174 0.0000000754 -0.0000000754
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9.0 2.7179 2.7179 0.0000000754 -0.0000000754
10.0 2.7182 2.7182 0.0000000754 -0.0000000754

Third order RK

t ye y3 erry3
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

This output closely parallels the previous output for the (1, 2) RK pair. Here
are some details.

• Considering the output for the second-order RK at t = 1:

h ye y2 erry2 esty2

1 1.8816 1.8918 0.0101750113 −0.0185221389
0.1 1.8816 1.8819 0.0003179977 −0.0003270335
0.01 1.8816 1.8816 0.0000035779 −0.0000035865
0.001 1.8816 1.8816 0.0000000362 −0.0000000362

— The O(h2) behavior of erry2 is clear, i.e., for h = 0.1, 0.01, 0.001 the
corresponding values of erry2 are

0.0003179977, 0.0000035779, 0.0000000362

so that for each reduction in h by 1/10, erry2 is reduced by a factor
of 1/100 (two more zeros are added after the decimal point).

— The same is true for the estimated error, erty2 (computed as the
difference y3 − y2), i.e., for h = 0.1, 0.01, 0.001 the corresponding
values of esty2 are

−0.0003270335, −0.0000035865, −0.0000000362

so that two more zeros are added after the decimal point for each
1/10 reduction in h.
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— The estimated error, esty2 is in close agreement with the exact error,
err y2, for small h.

— Thus, adding esty2 as a correction to y2 will bring the corrected y2
into closer agreement with the exact solution, ye . In other words,
esty2 can be used to determine whether h is small enough to achieve
a prescribed accuracy, and once an acceptable h is thereby selected,
esty2 can be added to y2 to improve the numerical solution (all with-
out knowledge of the exact solution).

• The corresponding output for the third order RK at t = 1 is

h ye y3 erry3

1 1.8816 1.8732 −0.0083471276
0.1 1.8816 1.8816 −0.0000090358
0.01 1.8816 1.8816 −0.0000000085
0.001 1.8816 1.8816 0.0000000000

— Again, the third order behavior is clear. For h = 1, 0.1, 0.01, 0.001,
the corresponding exact errors are

−0.0083471276, −0.0000090358, −0.0000000085, 0.0000000000

so a 1/10 reduction in h results in a 1/1000 reduction in erry3.
— In fact, since for most scientific and engineering applications of ODEs,

five figure accuracy of the numerical solutions is usually adequate,
the last two values of erry3 (for h = 0.01, 0.001) can be considered
excessively small (these errors are much less than five significant fig-
ures compared to the exact solution ye = 1.8816). In other words, h =
0.01, 0.001 are excessively small. This is an important point. While
MATLAB produced all of the numerical output (for h = 1, 0.1, 0.01,
0.001) in the order of a second or two for this modest 1x1 problem,
for large systems of ODEs, using an execessively small h will merely
result in long computer run times with no significant improvement
in the accuracy of the solution. Thus, library routines for integrat-
ing ODEs increase h as well as decrease it to produce solutions close to
the specified error tolerance (and not far below the specified error
because of excessively small h). We shall subsequently consider this
feature of reducing and increasing h to stay close to the specified
error tolerance in the library routines.

— Stated in another way, the preceding solutions for h = 1, 0.1, 0.01,
0.001 for the interval 0 ≤ t ≤ t f (= 10) required 10/1, 10/0.1, 10/0.01,
10/0.001 steps, respectively. 10/0.1 = 100 steps were adequate
(because of the accuracy of the third-order RK), while 10/0.01 = 1000
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and 10/0.001 = 10000 steps produced excessive accuracy. However,
10/1 = 10 steps were inadequate as might be expected.

• In conclusion, the effectiveness of higher order algorithms, e.g., the third-
order RK, in reducing the error in the numerical solution of ODEs is
clearly evident from this example.

To conclude this section, we consider a widely used RK (4, 5) pair, the
Runge Kutta Fehlberg (RKF) method (Iserles,2 p. 84):

k1 = f (yi , ti )h (1.49a)

k2 = f (yi + k1/4, ti + h/4)h (1.49b)

k3 = f (yi + (3/32)k1 + (9/32)k2, ti + (3/8)h)h (1.49c)

k4 = f (yi + (1932/2197)k1 − (7200/2197)k2 + (7296/2197)k3,

ti + (12/13)h)h (1.49d)

k5 = f (yi + (439/216)k1 − 8k2 + (3680/513)k3 − (845/4104)k4,

ti + h)h (1.49e)

k6 = f (yi − (8/27)k1 + 2k2 − (3544/2565)k3 + (1859/4104)k4

−(11/40)k5, ti + (1/2)h)h (1.49f)

A O(h4) stepping formula is then

y4,i+1 = yi + (25/216)k1 + (1408/2565)k3 + (2197/4104)k4 − (1/5)k5 (1.49g)

and a O(h5) stepping formula is (with the same k terms)

y5,i+1 = yi + (16/315)k1 + (6656/12825)k3 + (28561/56430)k4

−(9/50)k5 + (2/55)k6 (1.49h)

An error estimate can then be obtained by subtracting Equation 1.49g from
Equation 1.49h:

εi = yi+1,5 − yi+1,4 (1.49i)

Note that six derivative evaluations are required (k1 through k6), even though
the final result from Equation 1.49h is only O(h5) (the number of derivative
evaluations will, in general, be equal to or greater than the order of the final
stepping formula).

The stepping formulas of Equations 1.49h and 1.49g match the Taylor series
up to and including the terms (d4 yi/dt4)(h4/4!) and (d5 yi/dt5)(h5/5!), respec-
tively, as demonstrated by the following Program 1.3.
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% Program 1.3
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

V0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

V4=V0;
V5=V0;

%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t Ve V4 errV4 estV4

V5 errV5\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

V4b=V4;
V5b=V5;
tb=t;

%
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% RK constant k1
k14=lambda*exp(-alpha*t)*V4*h;
k15=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k2

V4=V4b+0.25*k14;
V5=V5b+0.25*k15;
t= tb+0.25*h;

k24=lambda*exp(-alpha*t)*V4*h;
k25=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k3

V4=V4b+(3.0/32.0)*k14...
+(9.0/32.0)*k24;

V5=V5b+(3.0/32.0)*k15...
+(9.0/32.0)*k25;

t= tb+(3.0/8.0)*h;
k34=lambda*exp(-alpha*t)*V4*h;
k35=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k4

V4=V4b+(1932.0/2197.0)*k14...
-(7200.0/2197.0)*k24...
+(7296.0/2197.0)*k34;

V5=V5b+(1932.0/2197.0)*k15...
-(7200.0/2197.0)*k25...
+(7296.0/2197.0)*k35;

t= tb+(12.0/13.0)*h;
k44=lambda*exp(-alpha*t)*V4*h;
k45=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k5

V4=V4b+( 439.0/ 216.0)*k14...
-( 8.0 )*k24...
+(3680.0/ 513.0)*k34...
-( 845.0/4104.0)*k44;

V5=V5b+( 439.0/ 216.0)*k15...
-( 8.0 )*k25...
+(3680.0/ 513.0)*k35...
-( 845.0/4104.0)*k45;

t= tb+h;
k54=lambda*exp(-alpha*t)*V4*h;
k55=lambda*exp(-alpha*t)*V5*h;

%
% RK constant k6
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V4=V4b-( 8.0/ 27.0)*k14...
+( 2.0 )*k24...
-(3544.0/2565.0)*k34...
+(1859.0/4104.0)*k44...
-( 11.0/ 40.0)*k54;

V5=V5b-( 8.0/ 27.0)*k15...
+( 2.0 )*k25...
-(3544.0/2565.0)*k35...
+(1859.0/4104.0)*k45...
-( 11.0/ 40.0)*k55;

t =tb+0.5*h;
k65=lambda*exp(-alpha*t)*V5*h;

%
% RK step

V4=V4b+( 25.0/ 216.0)*k14...
+( 1408.0/2565.0)*k34...
+( 2197.0/4104.0)*k44...
-( 1.0/ 5.0)*k54;

V5=V5b+( 16.0/ 135.0)*k15...
+( 6656.0/12825.0)*k35...
+(28561.0/56430.0)*k45...
-( 9.0/ 50.0)*k55...
+( 2.0/ 55.0)*k65;

t =tb+h;
end

%
% Print solutions and errors

Ve=V0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
errV4=V4-Ve;
errV5=V5-Ve;
estV4=V5-V4;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,Ve,V4,errV4,estV4,V5,errV5);
%
% Continue integration

end
%
% Next case

end

Program 1.3
Program for the integration of Equation 1.48 by the RKF45 method of
Equations 1.49

Program 1.3 closely parallels Programs 1.1 and 1.2. Therefore, we consider
only the essential difference, the evaluation of the RK constants, k1 to k6:
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%
% Store solution at base point

y4b=y4;
y5b=y5;
tb=t;

%
% RK constant k1

k14=lambda*exp(-alpha*t)*y4*h;
k15=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k2

y4=y4b+0.25*k14;
y5=y5b+0.25*k15;
t= tb+0.25*h;

k24=lambda*exp(-alpha*t)*y4*h;
k25=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k3

y4=y4b+(3.0/32.0)*k14...
+(9.0/32.0)*k24;

y5=y5b+(3.0/32.0)*k15...
+(9.0/32.0)*k25;

t= tb+(3.0/8.0)*h;
k34=lambda*exp(-alpha*t)*y4*h;
k35=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k4

y4=y4b+(1932.0/2197.0)*k14...
-(7200.0/2197.0)*k24...
+(7296.0/2197.0)*k34;

y5=y5b+(1932.0/2197.0)*k15...
-(7200.0/2197.0)*k25...
+(7296.0/2197.0)*k35;

t= tb+(12.0/13.0)*h;
k44=lambda*exp(-alpha*t)*y4*h;
k45=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k5

y4=y4b+( 439.0/ 216.0)*k14...
-( 8.0 )*k24...
+(3680.0/ 513.0)*k34...
-( 845.0/4104.0)*k44;

y5=y5b+( 439.0/ 216.0)*k15...
-( 8.0 )*k25...
+(3680.0/ 513.0)*k35...
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-( 845.0/4104.0)*k45;
t= tb+h;

k54=lambda*exp(-alpha*t)*y4*h;
k55=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k6

y4=y4b-( 8.0/ 27.0)*k14...
+( 2.0 )*k24...
-(3544.0/2565.0)*k34...
+(1859.0/4104.0)*k44...
-( 11.0/ 40.0)*k54;

y5=y5b-( 8.0/ 27.0)*k15...
+( 2.0 )*k25...
-(3544.0/2565.0)*k35...
+(1859.0/4104.0)*k45...
-( 11.0/ 40.0)*k55;

t =tb+0.5*h;
k65=lambda*exp(-alpha*t)*y5*h;

%
% RK step

y4=y4b+( 25.0/ 216.0)*k14...
+( 1408.0/2565.0)*k34...
+( 2197.0/4104.0)*k44...
-( 1.0/ 5.0)*k54;

y5=y5b+( 16.0/ 135.0)*k15...
+( 6656.0/12825.0)*k35...
+(28561.0/56430.0)*k45...
-( 9.0/ 50.0)*k55...
+( 2.0/ 55.0)*k65;

t =tb+h;
end

Not much explanation is required for this code since it follows directly from
Equations 1.49a to 1.49i. We can note the following points:

• Clearly there is a substantial degree of repetitive coding that could be
streamlined through the use of 1D arrays (particularly in the calculation
of k1 to k6).

• The O(h4) and O(h5) solutions are computed independently, and we will
next observe that they can be combined.

• The code is a mixture of problem-specific coding, i.e., using Equations 1.3
and 1.4, and general coding, i.e., Equations 1.49a to 1.49i. The separation
of the code into problem-specific and general coding would facilitate the
application of the (4, 5) pair to other problems; we will see how this can
be done; i.e., we are headed toward the development of general library
routines.
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The output from Program 1.3 is listed below (again, reformatted slightly to
fit on a printed page):

h = 1.000

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8814 -0.0001703991 0.0000660329
2.0 2.3742 2.3740 -0.0002465843 0.0001027923
3.0 2.5863 2.5860 -0.0002711657 0.0001138050
4.0 2.6689 2.6687 -0.0002799191 0.0001183957
5.0 2.7000 2.6997 -0.0002831506 0.0001202510
6.0 2.7116 2.7113 -0.0002843446 0.0001209619
7.0 2.7158 2.7155 -0.0002847848 0.0001212276
8.0 2.7174 2.7171 -0.0002849469 0.0001213259
9.0 2.7179 2.7177 -0.0002850065 0.0001213621

10.0 2.7182 2.7179 -0.0002850285 0.0001213755

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8815 -0.0001043662
2.0 2.3742 2.3741 -0.0001437920
3.0 2.5863 2.5861 -0.0001573607
4.0 2.6689 2.6688 -0.0001615234
5.0 2.7000 2.6999 -0.0001628996
6.0 2.7116 2.7114 -0.0001633827
7.0 2.7158 2.7156 -0.0001635572
8.0 2.7174 2.7172 -0.0001636210
9.0 2.7179 2.7178 -0.0001636444

10.0 2.7182 2.7180 -0.0001636530

h = 0.100

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 -0.0000000138 0.0000000135
2.0 2.3742 2.3742 -0.0000000198 0.0000000192
3.0 2.5863 2.5863 -0.0000000218 0.0000000212
4.0 2.6689 2.6689 -0.0000000226 0.0000000220
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5.0 2.7000 2.7000 -0.0000000229 0.0000000223
6.0 2.7116 2.7116 -0.0000000230 0.0000000224
7.0 2.7158 2.7158 -0.0000000231 0.0000000224
8.0 2.7174 2.7174 -0.0000000231 0.0000000225
9.0 2.7179 2.7179 -0.0000000231 0.0000000225

10.0 2.7182 2.7182 -0.0000000231 0.0000000225

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 -0.0000000005
3.0 2.5863 2.5863 -0.0000000006
4.0 2.6689 2.6689 -0.0000000006
5.0 2.7000 2.7000 -0.0000000006
6.0 2.7116 2.7116 -0.0000000006
7.0 2.7158 2.7158 -0.0000000006
8.0 2.7174 2.7174 -0.0000000006
9.0 2.7179 2.7179 -0.0000000006

10.0 2.7182 2.7182 -0.0000000006

h = 0.010

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000

10.0 2.7182 2.7182 0.0000000000 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
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3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

h = 0.001

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000

10.0 2.7182 2.7182 0.0000000000 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

This output is relatively easy to discuss since there are a lot of zeros! Specif-
ically,
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• At t = 1, with h = 1, which corresponds to a total of 10/1 = 10 steps, the
O(h5) method computed a solution accurate to at least four figures!

1.0 1.8816 1.8815 −0.0001043662

With 100 steps (h = 0.1) the error is only −0.0000000003 at t = 1

1.0 1.8816 1.8816 −0.0000000003

• The O(h4) behavior of the fourth order method is evident (at least to a
degree). At t = 1,

h ye y4 erry4 esty4

1 1.8816 1.8814 −0.0001703991 0.0000660329
0.1 1.8816 1.8816 −0.0000000138 0.0000000135
0.01 1.8816 1.8816 0.0000000000 0.0000000000
0.001 1.8816 1.8816 0.0000000000 0.0000000000

Approximately four zeros are added to the exact and estimated errors
when h is reduced from 1 to 0.1. When four more zeros (between h = 0.1
and h = 0.01) are added, the error drops below 0.0000000000 corre-
sponding to the %15.10 f format of the fprintf statement in Program 1.3.
Clearly, we can conclude that h = 0.01, 0.001 are excessively small for
most practical applications in science and engineering.

• The O(h5) behavior of the fifth-order method is evident (also, to a de-
gree). At t = 1,

h ye y5 erry5

1 1.8816 1.8815 −0.0001043662
0.1 1.8816 1.8816 −0.0000000003
0.01 1.8816 1.8816 0.0000000000
0.001 1.8816 1.8816 0.0000000000

At least five zeros are added to the exact error when h is reduced from 1
to 0.1. When five more zeros (between h = 0.1 and h = 0.01) are added,
the error drops far below 0.0000000000 (presumably) corresponding to
the %15.10 f format of the fprintf statement in Program 1.3. Again, we
can conclude that h = 0.01, 0.001 are excessively small for most practical
applications, and a library routine would be far more efficient if it limited
the reduction in h to somewhere in the range 0.1 ≤ h ≤ 1 rather than
allow h to drop much below 0.1.

• We can conclude the additional effort to compute the RK constants k1 to
k6 is probably worthwhile since far larger steps (h) can be used to achieve
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a solution of a given accuracy than when using lower-order methods (the
(1, 2) pair or even the (2, 3) pair).

Finally, we can consider why the various RK algorithms have the orders
we have observed (beyond just observing that the higher-order methods fit
more of the terms in the underlying Taylor series). For example, why is the
first-order RK (Euler’s method) O(h)?

The first-order RK method includes the (dy/dt)(h/1!) term in the Taylor se-
ries, but excludes through truncation of the Taylor series the term (d2 y/dt2)×
(h2/2!) and higher-order terms. If the second order term is considered, the
principal source of the integration error for the Euler method, which is true
for small h for which the higher-order terms are negligible, then it would seem
that the Euler method is second order (because of the h2 in (d2 y/dt2)(h2/2!)).

However, this second derivative term is the local or one step error, that is,
the error incurred by taking just one step along the solution of length h. But in
computing a numerical solution using, for example, Programs 1.1 to 1.3, many
steps are taken, and we are primarily interested in the total or global error after
many steps (this is the error that we actually observe in the numerical solution
to an ODE system, and which we want to control at some acceptable level).

We can analyze the relationship between the local error and the global error
in the following way. If we assume that the error in using the Euler method
is due to just the second derivative term:

εi = d2 yi

dt2

h2

2!

then the local or one step error is O(h2). If we integrate over a series of steps
of length h from t = a to t = b using n steps, that is

n = b − a
h

we can then estimate the total or global error as

global error = (one step error)(number of steps)

or

global error = d2 yi

dt2

h2

2!

(
b − a

h

)
= d2 yi

dt2

(
b − a

2!

)
h

so that the global error is O(h) as we observed. Note that this is an approximate
analysis based on two assumptions:

1. All of the local error is contained in just the one term (d2 yi/dt2)(h2/2!).
2. The derivative d2 yi/dt2 is essentially constant over the interval a ≤

t ≤ b (or we can use some appropriate average value of this second
derivative).
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A more rigorous analysis to show that the Euler method is O(h) globally
is rather involved. Also, generally for the higher-order methods, the global
error will be one order in h lower than the one step error, so, for example, the
previous (4, 5) pair is O(h5)− O(h6) locally, but O(h4)− O(h5) globally (again,
this can be established in a nonrigorous way for a general interval t = a to
t = b as we did for the Euler method).

We now consider the streamlining of the programming as mentioned pre-
viously for the (4, 5) pair.

1.5 Embedded RK Algorithms

We first note the interesting property of the RKF (4, 5) pair that the RK con-
stants k1 to k5 given by Equations 1.49a to 1.49e are the same for both the O(h4)

and O(h5) stepping formulas of Equations 1.49g and 1.49h (k6 is required for
only the O(h5) method of Equation 1.49h). Thus, we can consider the O(h4)

method of Equation 1.49g to be embedded in the O(h5) method of Equation
1.49h. This has an important implication: k1 to k5 need be calculated only once for
both methods (rather than for each method as in Program 1.3). With this idea
in mind, the only difference between the two methods is the calculation of k6
for the O(h5) method of Equation 1.49g, and the selection of a base point for the
next step (either the O(h4) or the O(h5) base point—we will select the latter).

This same feature appears in the (1, 2) pair of Equations 1.28 and 1.29; the
Euler method is embedded in the modified Euler method, with the common
k1 of Equation 1.27a. Similarly, for the (2, 3) pair, the second-order method
of Equation 1.42a is embedded in the third-order method of Equation 1.44a,
with the common k1 of Equation 1.42b (or Equation 1.44b) and the common
k2 of Equation 1.42c (or Equation 1.44c).

The embedding of the (1, 2) pair is illustrated by the following Program
1.4, which is a small revision of Program 1.1:

% Program 1.4
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
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% Integration step
if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y2=y0;
%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y1 erry1 esty1

y2 erry2\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

yb=y2;
tb=t;

%
% RK constant k1

k1=lambda*exp(-alpha*tb)*y2*h;
%
% RK constant k2

y2=yb+k1;
t=tb+h;
k2=lambda*exp(-alpha*t)*y2*h;

%
% RK step

y1=yb+k1;
y2=yb+(k1+k2)/2.0;
esty1=y2-y1;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
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erry1=y1-ye;
erry2=y2-ye;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y1,erry1,esty1,y2,erry2);
%
% Continue integration

end
%
% Next case

end

Program 1.4
Program for the integration of Equation 1.48 by the embedded ((1, 2) pair)
modified Euler method of Equations 1.28 and 1.29

We can note the following points about Program 1.4:

• The essential differences between Programs 1.1 and 1.2 are in the way
that the RK constants are computed and used. In particular, while keep-
ing in mind that y1 is the O(h) (Euler method) and y2 is the O(h2)

(modified Euler method), the base point is selected as the running value
of y2:

%
% Store solution at base point

yb=y2;
tb=t;

where the initial value of y2 was set previously as an initial condition.
• k1 and k2 are then calculated (according to Equations 1.27a and 1.27b):

%
% RK constant k1

k1=lambda*exp(-alpha*tb)*y2*h;
%
% RK constant k2

y2=yb+k1;
t=tb+h;
k2=lambda*exp(-alpha*t)*y2*h;

• The first- and second-order stepping formulas are then used (according
to Equations 1.28 and 1.29):

%
% RK step

y1=yb+k1;
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y2=yb+(k1+k2)/2.0;
esty1=y2-y1;

end

Note in this code that:
— The estimated error in y1, esty1, is computed by p refinement (sub-

traction of the O(h) solution from the O(h2) solution).
— The same value of k1 is used for both the first- and second-order

stepping formulas (making use of the embedding of the (2, 3) pair,
i.e., the first-order method is embedded in the second-order method)

— The end statement terminates the for loop of nsteps of length h.

Otherwise the programming is essentially the same as in Program 1.1. The
output from Program 1.4 is listed below (formatted to fit on a page):

h = 1.000

First order method

t ye y1 erry1 esty1
1.0 1.8816 2.0000 0.1184036125 -0.1321205588
2.0 2.3742 2.5550 0.1808239664 -0.1706841052
3.0 2.5863 2.7070 0.1207761366 -0.0939556225
4.0 2.6689 2.7432 0.0742305143 -0.0399272836
5.0 2.7000 2.7528 0.0527351769 -0.0154819007
6.0 2.7116 2.7557 0.0441724614 -0.0058064480
7.0 2.7158 2.7567 0.0409303986 -0.0021512746
8.0 2.7174 2.7571 0.0397250855 -0.0007934762
9.0 2.7179 2.7572 0.0392799583 -0.0002921837

10.0 2.7182 2.7573 0.0391159724 -0.0001075263

Second order method

t ye y2 erry2
1.0 1.8816 1.8679 -0.0137169464
2.0 2.3742 2.3843 0.0101398613
3.0 2.5863 2.6131 0.0268205142
4.0 2.6689 2.7033 0.0343032307
5.0 2.7000 2.7373 0.0372532762
6.0 2.7116 2.7499 0.0383660134
7.0 2.7158 2.7546 0.0387791239
8.0 2.7174 2.7563 0.0389316092
9.0 2.7179 2.7569 0.0389877746

10.0 2.7182 2.7572 0.0390084461
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h = 0.100

First order method

t ye y1 erry1 esty1
1.0 1.8816 1.8837 0.0021070298 -0.0021479991
2.0 2.3742 2.3760 0.0017594212 -0.0014290535
3.0 2.5863 2.5874 0.0011768161 -0.0006384570
4.0 2.6689 2.6698 0.0008767242 -0.0002516819
5.0 2.7000 2.7008 0.0007532605 -0.0000949453
6.0 2.7116 2.7123 0.0007059944 -0.0000352515
7.0 2.7158 2.7165 0.0006883524 -0.0000130123
8.0 2.7174 2.7181 0.0006818277 -0.0000047929
9.0 2.7179 2.7186 0.0006794227 -0.0000017640

10.0 2.7182 2.7188 0.0006785373 -0.0000006491

Second order method

t ye y2 erry2
1.0 1.8816 1.8816 -0.0000409693
2.0 2.3742 2.3745 0.0003303677
3.0 2.5863 2.5868 0.0005383591
4.0 2.6689 2.6696 0.0006250422
5.0 2.7000 2.7007 0.0006583152
6.0 2.7116 2.7122 0.0006707429
7.0 2.7158 2.7165 0.0006753402
8.0 2.7174 2.7180 0.0006770348
9.0 2.7179 2.7186 0.0006776587

10.0 2.7182 2.7188 0.0006778883

h = 0.010

First order method

t ye y1 erry1 esty1
1.0 1.8816 1.8816 0.0000217778 -0.0000218425
2.0 2.3742 2.3742 0.0000178106 -0.0000139313
3.0 2.5863 2.5863 0.0000121768 -0.0000061436
4.0 2.6689 2.6690 0.0000093347 -0.0000024108
5.0 2.7000 2.7000 0.0000081729 -0.0000009079
6.0 2.7116 2.7116 0.0000077291 -0.0000003369
7.0 2.7158 2.7158 0.0000075636 -0.0000001243
8.0 2.7174 2.7174 0.0000075024 -0.0000000458
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9.0 2.7179 2.7180 0.0000074798 -0.0000000169
10.0 2.7182 2.7182 0.0000074715 -0.0000000062

Second order method

t ye y2 erry2
1.0 1.8816 1.8816 -0.0000000647
2.0 2.3742 2.3742 0.0000038793
3.0 2.5863 2.5863 0.0000060332
4.0 2.6689 2.6690 0.0000069239
5.0 2.7000 2.7000 0.0000072649
6.0 2.7116 2.7116 0.0000073922
7.0 2.7158 2.7158 0.0000074392
8.0 2.7174 2.7174 0.0000074566
9.0 2.7179 2.7180 0.0000074629

10.0 2.7182 2.7182 0.0000074653

h = 0.001

First order method

t ye y1 erry1 esty1
1.0 1.8816 1.8816 0.0000002185 -0.0000002187
2.0 2.3742 2.3742 0.0000001784 -0.0000001390
3.0 2.5863 2.5863 0.0000001222 -0.0000000612
4.0 2.6689 2.6689 0.0000000940 -0.0000000240
5.0 2.7000 2.7000 0.0000000824 -0.0000000090
6.0 2.7116 2.7116 0.0000000780 -0.0000000034
7.0 2.7158 2.7158 0.0000000764 -0.0000000012
8.0 2.7174 2.7174 0.0000000758 -0.0000000005
9.0 2.7179 2.7179 0.0000000756 -0.0000000002

10.0 2.7182 2.7182 0.0000000755 -0.0000000001

Second order method

t ye y2 erry2
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 0.0000000394
3.0 2.5863 2.5863 0.0000000610
4.0 2.6689 2.6689 0.0000000700
5.0 2.7000 2.7000 0.0000000734
6.0 2.7116 2.7116 0.0000000747
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7.0 2.7158 2.7158 0.0000000751
8.0 2.7174 2.7174 0.0000000753
9.0 2.7179 2.7179 0.0000000754

10.0 2.7182 2.7182 0.0000000754

We can note the following points about this output:

• The first-order method appears to be higher than O(h). For example, at
t = 1, the output is

h ye y1 erry1 esty1

1 1.8816 2.0000 0.1184036125 −0.1321205588
0.1 1.8816 1.8837 0.0021070298 −0.0021479991
0.01 1.8816 1.8816 0.0000217778 −0.0000218425
0.001 1.8816 1.8816 0.0000002185 −0.0000002187

In fact, the first-order method appears to be second order correct! For ex-
ample, reducing h from 0.1 to 0.01 reduces the exact error from
0.0021070298 to 0.0000217778 (two zeros are added after the decimal
point). The reason for this is that the second-order solution, y2, is used
as the base point for the next step along the solution, i.e.,

%
% Store solution at base point

yb=y2;
tb=t;

To state this in other words, y1 is corrected by esty1 before going on to
the next point. For example, at t = 1 for h = 0.1,

y1 + y1est = 1.8837 − 0.0021479991 = 1.8816 = y2

This is an important point discussed previously as Step 4 in the algorithm
after Equation 1.26c. In other words, in a library ODE integrator, which
automatically adjusts the step h, the estimated error esty1 will generally
be computed to determine if the step h is small enough to satisfy a
specified error tolerance. When h becomes small enough to meet the
error criterion, the estimated error can be added as a correction before
taking the next step along the solution. In this case (the (1, 2) pair), this
in effect increases the accuracy of the solution from O(h) to O(h2) as we
observed in the preceding output from Program 1.4.

• This error correction could be programmed in a slightly dfifferent, but
equivalent, way (see Equations 1.30):
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%
% RK step

y1=yb+k1;
esty1=(k2-k1)/2.0;
y2=y1+esty1;

end

Clearly, adding the estimated error as a correction (y2 = y1 + esty1) be-
fore taking the next step along the solution (as explained in the algorithm
after Equation 1.26c) was worth doing (the first-order method becomes
effectively second order).

• The exact error in y2 from Program 1.4, erry2, at t = 1 appears to be
greater than O(h2):

h ye y2 erry2

1 1.8816 1.8679 −0.0137169464
0.1 1.8816 1.8816 −0.0000409693
0.01 1.8816 1.8816 −0.0000000647
0.001 1.8816 1.8816 −0.0000000003

However, generally, this error is O(h2). For example, at t = 2, the exact
error in y2 is

h erry2

1 0.0101398613
0.1 0.0003303677
0.01 0.0000038793
0.001 0.0000000394

(so that two zeros are added after the decimal point for each 1/10 reduc-
tion in h, as expected).

• The estimated error, esty1 appears to converge to the exact error, erry1,
for small h:

h erry1 esty1

1 0.1184036125 −0.1321205588
0.1 0.0021070298 −0.0021479991
0.01 0.0000217778 −0.0000218425
0.001 0.0000002185 −0.0000002187

This convergence again illustrates the important point that the estimated
error accurately estimates the exact error for small h (and thus adding it
as a correction to the O(h) solution gives a substantially better solution).
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We next investigate the embedding of the (2, 3) pair of Equations 1.42 and
1.44. The following Program 1.5, which is analogous to Program 1.4, illustrates
how this embedding can be used.

% Program 1.5
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y3=y0;
%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y2 erry2 esty2

y3 erry3\n')
%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

yb=y3;
tb=t;
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%
% RK constant k1

k1=lambda*exp(-alpha*t)*y3*h;
%
% RK constant k2

y3=yb+(2.0/3.0)*k1;
t=tb+(2.0/3.0)*h;

k2=lambda*exp(-alpha*t)*y3*h;
%
% RK integration K3

y3=yb+(2.0/3.0)*k2;
t=tb+(2.0/3.0)*h;

k3=lambda*exp(-alpha*t)*y3*h;
%
% RK step

y2=yb+(1.0/4.0)*k1+(3.0/4.0)*k2;
y3=yb+(1.0/4.0)*k1+(3.0/8.0)*k2+(3.0/8.0)*k3;
esty2=y3-y2;
t=tb+h;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry2=y2-ye;
erry3=y3-ye;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y2,erry2,esty2,y3,erry3);
%
% Continue integration

end
%
% Next case

end

Program 1.5
Program for the integration of Equation 1.48 by the (2, 3) pair of Equations
1.42 and 1.44

Program 1.5 closely parallels Program 1.4. As expected, k1 and k2 are used
for both the second- and third-order stepping formulas (k3 is required for only
the third-order stepping formula):

%
% RK step

y2=yb+(1.0/4.0)*k1+(3.0/4.0)*k2;
y3=yb+(1.0/4.0)*k1+(3.0/8.0)*k2+(3.0/8.0)*k3;
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esty2=y3-y2;
t=tb+h;

end

The output from Program 1.5 is listed below:

h = 1.000

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8918 0.0101750113 -0.0185221389
2.0 2.3742 2.3760 0.0017600371 -0.0117360496
3.0 2.5863 2.5785 -0.0077128645 -0.0024469927
4.0 2.6689 2.6592 -0.0097573439 -0.0003848403
5.0 2.7000 2.6900 -0.0100669280 -0.0000549878
6.0 2.7116 2.7014 -0.0101048752 -0.0000075909
7.0 2.7158 2.7057 -0.0101076784 -0.0000010348
8.0 2.7174 2.7073 -0.0101071543 -0.0000001404
9.0 2.7179 2.7078 -0.0101067488 -0.0000000190

10.0 2.7182 2.7081 -0.0101065707 -0.0000000026

Third order method

t ye y3 erry3
1.0 1.8816 1.8732 -0.0083471276
2.0 2.3742 2.3642 -0.0099760125
3.0 2.5863 2.5761 -0.0101598572
4.0 2.6689 2.6588 -0.0101421842
5.0 2.7000 2.6899 -0.0101219158
6.0 2.7116 2.7014 -0.0101124662
7.0 2.7158 2.7057 -0.0101087132
8.0 2.7174 2.7073 -0.0101072948
9.0 2.7179 2.7078 -0.0101067678

10.0 2.7182 2.7081 -0.0101065733

h = 0.100

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000183521 -0.0000273880
2.0 2.3742 2.3742 -0.0000035143 -0.0000067556
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3.0 2.5863 2.5863 -0.0000092951 -0.0000011124
4.0 2.6689 2.6689 -0.0000102271 -0.0000001614
5.0 2.7000 2.7000 -0.0000103474 -0.0000000224
6.0 2.7116 2.7115 -0.0000103581 -0.0000000031
7.0 2.7158 2.7158 -0.0000103573 -0.0000000004
8.0 2.7174 2.7174 -0.0000103564 -0.0000000001
9.0 2.7179 2.7179 -0.0000103560 0.0000000000

10.0 2.7182 2.7181 -0.0000103558 0.0000000000

Third order method

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000090358
2.0 2.3742 2.3742 -0.0000102699
3.0 2.5863 2.5862 -0.0000104074
4.0 2.6689 2.6689 -0.0000103885
5.0 2.7000 2.7000 -0.0000103698
6.0 2.7116 2.7115 -0.0000103611
7.0 2.7158 2.7158 -0.0000103577
8.0 2.7174 2.7174 -0.0000103564
9.0 2.7179 2.7179 -0.0000103560

10.0 2.7182 2.7181 -0.0000103558

h = 0.010

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000183 -0.0000000269
2.0 2.3742 2.3742 -0.0000000033 -0.0000000063
3.0 2.5863 2.5863 -0.0000000086 -0.0000000010
4.0 2.6689 2.6689 -0.0000000094 -0.0000000001
5.0 2.7000 2.7000 -0.0000000095 0.0000000000
6.0 2.7116 2.7116 -0.0000000095 0.0000000000
7.0 2.7158 2.7158 -0.0000000095 0.0000000000
8.0 2.7174 2.7174 -0.0000000095 0.0000000000
9.0 2.7179 2.7179 -0.0000000095 0.0000000000

10.0 2.7182 2.7182 -0.0000000095 0.0000000000
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Third order method

t ye y3 erry3
1.0 1.8816 1.8816 -0.0000000085
2.0 2.3742 2.3742 -0.0000000096
3.0 2.5863 2.5863 -0.0000000096
4.0 2.6689 2.6689 -0.0000000096
5.0 2.7000 2.7000 -0.0000000096
6.0 2.7116 2.7116 -0.0000000096
7.0 2.7158 2.7158 -0.0000000095
8.0 2.7174 2.7174 -0.0000000095
9.0 2.7179 2.7179 -0.0000000095

10.0 2.7182 2.7182 -0.0000000095

h = 0.001

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000

10.0 2.7182 2.7182 0.0000000000 0.0000000000

Third order method

t ye y3 erry3
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000
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We can note the following points about this output:

• The corrected y2 appears to be O(h3), e.g., for t = 1,

h ye y2 erry2 esty2

1 1.8816 1.8918 0.0101750113 −0.0185221389
0.1 1.8816 1.8816 0.0000183521 −0.0000273880
0.01 1.8816 1.8816 0.0000000183 −0.0000000269
0.001 1.8816 1.8816 0.0000000000 0.0000000000

Note that when h is reduced from 0.1 to 0.01, erry2 is reduced from
0.0000183521 to 0.0000000183 so that three zeros were added after the
decimal point. This is expected since y2 is corrected by esty2 before
taking the next step along the solution, thereby giving an O(h3) result
(y3 is used as the base point value for the next step).

• esty2 is not as reliable an estimate of the true error, erry2 as we would
like. For some points along the solution, it underestimates the exact error
in y2, and at other points, it overestimates the exact error. For example,
when h = 0.01,

h = 0.010

Second order method

t ye y2 erry2 esty2
1.0 1.8816 1.8816 0.0000000183 -0.0000000269
2.0 2.3742 2.3742 -0.0000000033 -0.0000000063
3.0 2.5863 2.5863 -0.0000000086 -0.0000000010
4.0 2.6689 2.6689 -0.0000000094 -0.0000000001
5.0 2.7000 2.7000 -0.0000000095 0.0000000000
6.0 2.7116 2.7116 -0.0000000095 0.0000000000
7.0 2.7158 2.7158 -0.0000000095 0.0000000000
8.0 2.7174 2.7174 -0.0000000095 0.0000000000
9.0 2.7179 2.7179 -0.0000000095 0.0000000000

10.0 2.7182 2.7182 -0.0000000095 0.0000000000

An overestimate of the exact error is conservative in adjusting h, but an
underestimate will possibly produce an h that is too large to actually limit
the exact error to a specified value or tolerance. Certainly we would like
to have a reliable (quantitatively correct) estimate of the true error so that
we can reliably adjust h. Another way to interpret this result (estimate of
limited accuracy) is to observe that the higher-order solution y3 also has
some error and therefore the estimated error is not a perfect correction
(it does not give a higher-order solution without error).
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Finally, we investigate the embedding of the (4, 5) pair of Equations 1.49.
The following Program 1.6, which is analogous to Programs 1.4 and 1.5, illus-
trates how this embedding can be used.

%
% Program 1.6
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Model parameters

y0=1.0;
lambda=1.0;
alpha=1.0;

%
% Step through cases

for ncase=1:4
%
% Integration step

if(ncase==1)h=1.0 ;nsteps=1 ;end
if(ncase==2)h=0.1 ;nsteps=10 ;end
if(ncase==3)h=0.01 ;nsteps=100 ;end
if(ncase==4)h=0.001;nsteps=1000;end

%
% Variables for ODE integration

tf=10.0;
t=0.0;

%
% Initial condition

y5=y0;
%
% Print heading

fprintf('\n\nh = %6.3f\n',h);
fprintf(...
' t ye y4 erry4 esty4 y5 erry5\n')

%
% Continue integration

while t<0.999*tf
%
% Take nsteps integration steps

for i=1:nsteps
%
% Store solution at base point

yb=y5;
tb=t;
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%
% RK constant k1

k1=lambda*exp(-alpha*t)*y5*h;
%
% RK constant k2

y5=yb+0.25*k1;
t=tb+0.25*h;

k2=lambda*exp(-alpha*t)*y5*h;
%
% RK constant k3

y5=yb+(3.0/32.0)*k1...
+(9.0/32.0)*k2;

t=tb+(3.0/8.0)*h;
k3=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k4

y5=yb+(1932.0/2197.0)*k1...
-(7200.0/2197.0)*k2...
+(7296.0/2197.0)*k3;

t=tb+(12.0/13.0)*h;
k4=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k5

y5=yb+( 439.0/ 216.0)*k1...
-( 8.0 )*k2...
+(3680.0/ 513.0)*k3...
-( 845.0/4104.0)*k4;

t=tb+h;
k5=lambda*exp(-alpha*t)*y5*h;

%
% RK constant k6

y5=yb-( 8.0/ 27.0)*k1...
+( 2.0 )*k2...
-(3544.0/2565.0)*k3...
+(1859.0/4104.0)*k4...
-( 11.0/ 40.0)*k5;

t=tb+0.5*h;
k6=lambda*exp(-alpha*t)*y5*h;

%
% RK step

y4=yb+( 25.0/ 216.0)*k1...
+( 1408.0/2565.0)*k3...
+( 2197.0/4104.0)*k4...
-( 1.0/ 5.0)*k5;



Some Basics of ODE Integration 67

y5=yb+( 16.0/ 135.0)*k1...
+( 6656.0/12825.0)*k3...
+(28561.0/56430.0)*k4...
-( 9.0/ 50.0)*k5...
+( 2.0/ 55.0)*k6;

esty4=y5-y4;
t=tb+h;

end
%
% Print solutions and errors

ye=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t)));
erry4=y4-ye;
erry5=y5-ye;
fprintf('%5.1f%9.4f%9.4f%15.10f%15.10f%9.4f%15.10f\n',...

t,ye,y4,erry4,esty4,y5,erry5);
%
% Continue integration

end
%
% Next case

end

Program 1.6
Program for the integration of Equation 1.48 by the RKF45 pair of Equations
1.49

Program 1.6 closely parallels Programs 1.4 and 1.5. As expected, k1 to k5 are
used for both the fourth- and fifth-order stepping formulas (k6 is required for
only the fifth-order stepping formula)

%
% RK step

y4=yb+( 25.0/ 216.0)*k1...
+( 1408.0/2565.0)*k3...
+( 2197.0/4104.0)*k4...
-( 1.0/ 5.0)*k5;

y5=yb+( 16.0/ 135.0)*k1...
+( 6656.0/12825.0)*k3...
+(28561.0/56430.0)*k4...
-( 9.0/ 50.0)*k5...
+( 2.0/ 55.0)*k6;

esty4=y5-y4;
t=tb+h;

end

Note also that k2 is not used in either stepping formula (but it is required to
calculate k3 to k6).
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The output from Program 1.6 is listed below:

h = 1.000

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8814 -0.0001703991 0.0000660329
2.0 2.3742 2.3740 -0.0001632647 0.0000194727
3.0 2.5863 2.5861 -0.0001591927 0.0000018321
4.0 2.6689 2.6688 -0.0001624755 0.0000009521
5.0 2.7000 2.6999 -0.0001633761 0.0000004765
6.0 2.7116 2.7114 -0.0001635804 0.0000001976
7.0 2.7158 2.7156 -0.0001636333 0.0000000760
8.0 2.7174 2.7172 -0.0001636494 0.0000000284
9.0 2.7179 2.7178 -0.0001636549 0.0000000105

10.0 2.7182 2.7180 -0.0001636569 0.0000000039

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8815 -0.0001043662
2.0 2.3742 2.3741 -0.0001437920
3.0 2.5863 2.5861 -0.0001573607
4.0 2.6689 2.6688 -0.0001615234
5.0 2.7000 2.6999 -0.0001628996
6.0 2.7116 2.7114 -0.0001633827
7.0 2.7158 2.7156 -0.0001635572
8.0 2.7174 2.7172 -0.0001636210
9.0 2.7179 2.7178 -0.0001636444

10.0 2.7182 2.7180 -0.0001636530

h = 0.100

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 -0.0000000009 0.0000000006
2.0 2.3742 2.3742 -0.0000000006 0.0000000000
3.0 2.5863 2.5863 -0.0000000006 0.0000000000
4.0 2.6689 2.6689 -0.0000000006 0.0000000000
5.0 2.7000 2.7000 -0.0000000006 0.0000000000
6.0 2.7116 2.7116 -0.0000000006 0.0000000000
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7.0 2.7158 2.7158 -0.0000000006 0.0000000000
8.0 2.7174 2.7174 -0.0000000006 0.0000000000
9.0 2.7179 2.7179 -0.0000000006 0.0000000000

10.0 2.7182 2.7182 -0.0000000006 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 -0.0000000005
3.0 2.5863 2.5863 -0.0000000006
4.0 2.6689 2.6689 -0.0000000006
5.0 2.7000 2.7000 -0.0000000006
6.0 2.7116 2.7116 -0.0000000006
7.0 2.7158 2.7158 -0.0000000006
8.0 2.7174 2.7174 -0.0000000006
9.0 2.7179 2.7179 -0.0000000006

10.0 2.7182 2.7182 -0.0000000006

h = 0.010

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 -0.0000000009 0.0000000006
2.0 2.3742 2.3742 -0.0000000006 0.0000000000
3.0 2.5863 2.5863 -0.0000000006 0.0000000000
4.0 2.6689 2.6689 -0.0000000006 0.0000000000
5.0 2.7000 2.7000 -0.0000000006 0.0000000000
6.0 2.7116 2.7116 -0.0000000006 0.0000000000
7.0 2.7158 2.7158 -0.0000000006 0.0000000000
8.0 2.7174 2.7174 -0.0000000006 0.0000000000
9.0 2.7179 2.7179 -0.0000000006 0.0000000000

10.0 2.7182 2.7182 -0.0000000006 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 -0.0000000003
2.0 2.3742 2.3742 -0.0000000005
3.0 2.5863 2.5863 -0.0000000006
4.0 2.6689 2.6689 -0.0000000006
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5.0 2.7000 2.7000 -0.0000000006
6.0 2.7116 2.7116 -0.0000000006
7.0 2.7158 2.7158 -0.0000000006
8.0 2.7174 2.7174 -0.0000000006
9.0 2.7179 2.7179 -0.0000000006

10.0 2.7182 2.7182 -0.0000000006

h = 0.001

Fourth order method

t ye y4 erry4 esty4
1.0 1.8816 1.8816 0.0000000000 0.0000000000
2.0 2.3742 2.3742 0.0000000000 0.0000000000
3.0 2.5863 2.5863 0.0000000000 0.0000000000
4.0 2.6689 2.6689 0.0000000000 0.0000000000
5.0 2.7000 2.7000 0.0000000000 0.0000000000
6.0 2.7116 2.7116 0.0000000000 0.0000000000
7.0 2.7158 2.7158 0.0000000000 0.0000000000
8.0 2.7174 2.7174 0.0000000000 0.0000000000
9.0 2.7179 2.7179 0.0000000000 0.0000000000

10.0 2.7182 2.7182 0.0000000000 0.0000000000

Fifth order method

t ye y5 erry5
1.0 1.8816 1.8816 0.0000000000
2.0 2.3742 2.3742 0.0000000000
3.0 2.5863 2.5863 0.0000000000
4.0 2.6689 2.6689 0.0000000000
5.0 2.7000 2.7000 0.0000000000
6.0 2.7116 2.7116 0.0000000000
7.0 2.7158 2.7158 0.0000000000
8.0 2.7174 2.7174 0.0000000000
9.0 2.7179 2.7179 0.0000000000

10.0 2.7182 2.7182 0.0000000000

We can note the following points about this output:

• For h = 1, esty4 is not a reliable estimate of the exact error, erry4. How-
ever, the solution for h = 1 results from only a total of ten steps in the
interval 0 ≤ t ≤ 10, so we might expect that the estimated error esty4
will not be very accurate. Also, even with just ten steps, the (4, 5) pair
produced a solution that is accurate to about five figures.
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• For h = 0.1, the solution is so accurate that the exact and estimated errors
appear in only the tenth decimal place (the final decimal place provided
by the %15.10f format of the fprintf statement).

• h = 0.01 and 0.001 appear to be excessively small.

We conclude this section with a (2, 4) embedded pair, i.e., an O(h2) method
embedded in an O(h4) method. The fourth-order method (the original RK
method reported by Runge and Kutta in the 1890s) is

k1 = f (yi , ti )h (1.50a)

k2 = f (yi + k1/2, ti + h/2)h (1.50b)

k3 = f (yi + k2/2, ti + h/2)h (1.50c)

k4 = f (yi + k3, ti + h)h (1.50d)

with the stepping formula

y4,i+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4) (1.50e)

As we discussed previously, Equation 1.50e fits the Taylor series up to and
including the fourth-order derivative term, (d4 y/dt4)(h4/4!); i.e., the resulting
numerical solution is O(h4).

The second-order midpoint RK method of Equations 1.40 has the same
k1 and k2 and therefore is embedded in the fourth-order method. An error
estimate for this second-order method can be obtained by subtracting the
second-order stepping formula from the fourth-order stepping formula of
Equation 1.50e:

εi = y4,i+1 − y2,i+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4) − (yi + k2)

= (1/6)(k1 − 4k2 + 2k3 + k4) (1.51)

Note how the k1 and k2 terms combine in arriving at Equation 1.51 since they
are the same for both algorithms, i.e., Equations 1.40 and 1.50. εi of Equation
1.51 can now be used to automatically adjust the integration step, h, which is
the basis of the programming in a set of routines to be discussed in subsequent
chapters.

Note also that since this error estimate was achieved by subtracting the
stepping formula for a second-order method (Equation 1.40a), from the step-
ping formula for a fourth-order method (Equation 1.50e), the error estimate
actually represents two terms in the Taylor series, i.e., (d3 y/dt3)(h3/3!) and
(d4 y/dt4)(h4/4!); i.e., εi from Equation 1.51 is a two term error estimate, and
therefore we might expect that it will be more accurate than the one term
error estimates of the preceding (1, 2), (2, 3), and (4, 5) pairs. Experience has
indicated this is the case. In fact, some additional embedded RK pairs are
listed in Appendix A, which have three term error estimates.
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The principal conclusions from this discussion of embedded methods are
as follows:

• The RK constants generally can be computed once for both the lower-
order and the higher-order methods of an embedded pair. In other
words, the common RK constants are the basis for embedded pairs.

• Correction of the lower-order solution using the estimated error (the dif-
ference between the higher- and lower-order methods) gives a substan-
tially improved lower-order solution. In other words, the higher-order
solution is used as the base point for the next step along the solution.

1.6 Library ODE Integrators

We have discussed several RK pairs ((1, 2), (2, 3), (2, 4), (4, 5)) that can be used
in library routines. Because each pair produces an estimate of the truncation
error, these four methods can be used to automatically adjust h to achieve a
specified error tolerance. Furthermore, although the preceding programming
of the four pairs has been for a 1x1 problem (Equations 1.3 and 1.4 with the
analytical solution (Equation 1.5)), they can be applied directly to the nxn
problem by using vectors for the RK constants and the stepping formulas.
Thus, we now have everything we need for general-purpose ODE integration
routines, which are discussed in subsequent chapters.

To illustrate what we might accomplish, we consider briefly the ODE li-
brary routines in MATLAB (of the programming languages considered in
the subsequent discussion, only Maple and MATLAB have built-in ODE util-
ities). MATLAB includes utilities for stiff and nonstiff ODEs (stiffness and
stability are discussed briefly in the next section). However, we consider here
only the nonstiff MATLAB integrators, ode23 and ode45, which is consistent
with the four RK pairs discussed previously since they are only for nonstiff
problems (they are explicit integrators). The development of stiff (implicit) in-
tegrators is considerably more involved than in the preceding development,
so we merely consider in the next section why they might be required for a
particular problem, Equations 1.6 to 1.17.

Program 1.7 calls the two MATLAB nonstiff solvers, ode23 and ode45, for
solution of Equations 1.3 and 1.4, with the evaluation of the exact solution,
Equation 1.5, to assess the accuracy of the numerical solution.

%
% Program 1.7
% Tumor model of eqs. (1.47), (1.48)
% (or eqs. (1.3), (1.4), (1.5))
%
% Global variables

global lambda alpha ncall;
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%
% Model parameters

lambda=1.0;
alpha=1.0;

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

%
% Initialize counter for derivative evaluations

ncall=0;
%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

%
% Initial condition

y0=1.0;
%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p7',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p7',tout,y0,options); end

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n reltol = %6.2e
\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t ye y erry\n');
for i=1:nout

ye(i)=y0*exp((lambda/alpha)*(1.0-exp(-alpha*t(i))));
erry(i)=ye(i)-y(i);
fprintf('%5.1f%9.4f%9.4f%15.10f\n',t(i),ye(i),y(i),

erry(i));
end
fprintf('\n ncall = %5d\n',ncall);

%
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% Next case
end

%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y(t)')
title(' Program 1.7, dy/dt = \lambda*exp(-\alpha*t)*y)')
print pro1p7.ps

Program 1.7
Program for the integration of Equation 1.48 by the library integrators ode23
and ode45

We can note the following points about Program 1.7:

• Three global variables are defined, which can then be shared between
Program 1.7 and a function, ode1p7.m, called by Program 1.7 to define
ODE (Equation 1.3). In other words, alpha, lambda, and ncall are used in
function ode1p7.m, but their values are initialized in Program 1.7:

%
% Global variables

global lambda alpha ncall;

• lambda and alpha are then set numerically (and, again, these values will
be available in ode1p7.m because they are global variables):

%
% Model parameters

lambda=1.0;
alpha=1.0;

ncall is initialized numerically later in the code.
• A method flag, mf , is set to one of two values: mf = 1 calls ode23 and

mf = 2 calls ode45:

%
% Select method

for mf=1:2

• For each value of mf , four solutions are computed, with relative and
absolute error tolerances of 10−4, 10−6, 10−8, and 10−10. ode23 and ode45
then attempt to adjust h to meet these tolerances:
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%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

• At the beginning of each case (ncase = 1 to 4), a counter, ncall, is initial-
ized that is then incremented each time the function ode1p7.m is called.
This procedure gives the total number of calls to ode1p7.m and thus the
number of derivative evaluations for each solution.

%
% Initialize counter for derivative evaluations

ncall=0;

Again, note that ncall is a global variable so its value is returned to
Program 1.7.

• The variables that define the interval in the independent variable, t,
and when the solution is displayed are then initialized. tout is a vector
containing t = 0, 1, . . . , 10 (a total of 11 output values of t):

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

• Initial condition (Equation 1.4) is set to start the solution:

%
% Initial condition

y0=1.0;

• The solution to Equation 1.3 is computed by ode12 or ode45, depending
on the value of mf :

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p7',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p7',tout,y0,options); end

Function option is first called to set the relative and absolute error toler-
ances. Function ode1p7.m defines ODE (Equation 1.3) by receiving the
global variables alpha and lambda, and the current values of t and y to
evaluate the right-hand side (RHS) of Equation 1.3:
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function yt=ode1p7(t,y)
%
% Set global variables

global lambda alpha ncall;
%
% ODE

yt(1)=lambda*exp(-alpha*t)*y(1);
%
% Increment counter for derivative evaluations

ncall=ncall+1;

Note that y is an input column vector (with one element, y(1), for the
1x1 ODE problem of Equation 1.3), and yt is an output column vector
(with one element, yt(1)). t is an input scaler. Also, ncall is incremented
by 1 each time ode1p7.m is called, which then provides the total number
of calls (derivative evaluations) reported in the output.

• The parameters and numerical solution are then displayed by a series
of fprintf statements, including the exact solution and the error in the
solution:

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n
reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t ye y erry\n');
for i=1:nout

ye(i)=y0*exp((lambda/alpha)
*(1.0-exp(-alpha*t(i))));

erry(i)=ye(i)-y(i);
fprintf('%5.1f%9.4f%9.4f%15.10f\n',t(i),ye(i),

y(i),erry(i));
end
fprintf('\n ncall = %5d\n',ncall);

The first line of the first fprintf statement has been put on two lines to fit
on the printed page, but would have to be returned to one line (since the
line break . . . cannot be used in the character string delimited by ′).

• After the four cases are completed for each of the two methods (a total
of (4)(2) = 8 solutions), the final (eighth) solution is plotted via the plot
and related statements and then saved via print pro1p7.ps. The resulting
Postscript file is Figure 1.4; this plot is rather bumpy because only 11
output values of t (in vector tout) are used. Of course, this number could
easily be increased.
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 Program 1.7, dy/dt = λ*exp( –α*t)*y)

FIGURE 1.4
Solution of Equations 1.3, 1.4, 1.5, from Program 1.7, mf = 2, ncase = 4.

%
% Next case

end
%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y(t)')
title('Program 1.7,

dy/dt = \lambda*exp(-\alpha*t)*y)')
print pro1p7.ps

Note in the title statement that Greek letters can be included in the label
in Figure 1.4 by using the codes \lambda and \alpha.

• Finally, we should note that routine ode23 is based on a RK (2, 3) pair,3

and ode45 is based on a RKF (4, 5) pair.3 The error estimates in these two
RK methods are used to adjust h to achieve the error tolerances specified
in the call to function options. Some detailed coding for this type of error
monitoring and control is given in the routines discussed in subsequent
chapters.
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The output from Program 1.7 is listed below:

mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000020034
2.0 2.3742 2.3743 -0.0000638807
3.0 2.5863 2.5864 -0.0000933201
4.0 2.6689 2.6691 -0.0001103656
5.0 2.7000 2.7002 -0.0001284242
6.0 2.7116 2.7117 -0.0001434300
7.0 2.7158 2.7160 -0.0001552112
8.0 2.7174 2.7175 -0.0001581733
9.0 2.7179 2.7181 -0.0001592608

10.0 2.7182 2.7183 -0.0001592537

ncall = 73

mf = 1
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000003221
2.0 2.3742 2.3742 -0.0000012721
3.0 2.5863 2.5863 -0.0000016231
4.0 2.6689 2.6689 -0.0000018847
5.0 2.7000 2.7000 -0.0000021190
6.0 2.7116 2.7116 -0.0000023452
7.0 2.7158 2.7158 -0.0000025176
8.0 2.7174 2.7174 -0.0000026866
9.0 2.7179 2.7179 -0.0000028883

10.0 2.7182 2.7182 -0.0000029806

ncall = 268
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mf = 1
case = 3
reltol = 1.00e-008
abstol = 1.00e-008

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000000072
2.0 2.3742 2.3742 -0.0000000188
3.0 2.5863 2.5863 -0.0000000229
4.0 2.6689 2.6689 -0.0000000260
5.0 2.7000 2.7000 -0.0000000285
6.0 2.7116 2.7116 -0.0000000309
7.0 2.7158 2.7158 -0.0000000331
8.0 2.7174 2.7174 -0.0000000354
9.0 2.7179 2.7179 -0.0000000374

10.0 2.7182 2.7182 -0.0000000394

ncall = 1180

mf = 1
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000000001
2.0 2.3742 2.3742 -0.0000000003
3.0 2.5863 2.5863 -0.0000000003
4.0 2.6689 2.6689 -0.0000000003
5.0 2.7000 2.7000 -0.0000000004
6.0 2.7116 2.7116 -0.0000000004
7.0 2.7158 2.7158 -0.0000000004
8.0 2.7174 2.7174 -0.0000000004
9.0 2.7179 2.7179 -0.0000000005

10.0 2.7182 2.7182 -0.0000000005

ncall = 5392
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mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8815 0.0000785756
2.0 2.3742 2.3742 0.0000230677
3.0 2.5863 2.5862 0.0000132883
4.0 2.6689 2.6689 0.0000149230
5.0 2.7000 2.7000 0.0000165095
6.0 2.7116 2.7115 0.0000172423
7.0 2.7158 2.7158 0.0000175329
8.0 2.7174 2.7174 0.0000176427
9.0 2.7179 2.7179 0.0000176835

10.0 2.7182 2.7181 0.0000177068

ncall = 73

mf = 2
case = 2
reltol = 1.00e-006
abstol = 1.00e-006

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 0.0000010053
2.0 2.3742 2.3742 0.0000010986
3.0 2.5863 2.5863 0.0000011560
4.0 2.6689 2.6689 0.0000010643
5.0 2.7000 2.7000 0.0000010083
6.0 2.7116 2.7116 0.0000009776
7.0 2.7158 2.7158 0.0000009652
8.0 2.7174 2.7174 0.0000009604
9.0 2.7179 2.7179 0.0000009586

10.0 2.7182 2.7182 0.0000009579

ncall = 85



Some Basics of ODE Integration 81

mf = 2
case = 3
reltol = 1.00e-008
abstol = 1.00e-008

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 0.0000000237
2.0 2.3742 2.3742 0.0000000012
3.0 2.5863 2.5863 0.0000000128
4.0 2.6689 2.6689 0.0000000112
5.0 2.7000 2.7000 0.0000000428
6.0 2.7116 2.7116 0.0000000092
7.0 2.7158 2.7158 0.0000000014
8.0 2.7174 2.7174 -0.0000000231
9.0 2.7179 2.7179 -0.0000000081

10.0 2.7182 2.7182 0.0000000077

ncall = 163

mf = 2
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 0.0000000001
2.0 2.3742 2.3742 -0.0000000001
3.0 2.5863 2.5863 -0.0000000001
4.0 2.6689 2.6689 0.0000000003
5.0 2.7000 2.7000 0.0000000004
6.0 2.7116 2.7116 -0.0000000004
7.0 2.7158 2.7158 0.0000000003
8.0 2.7174 2.7174 0.0000000002
9.0 2.7179 2.7179 -0.0000000003

10.0 2.7182 2.7182 0.0000000001

ncall = 385

We can note the following points about this output:

• Generally the output indicates that the relative error tolerances specified
in the call to function options have been met. For example, for the first
solution:
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mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t ye y erry
0.0 1.0000 1.0000 0.0000000000
1.0 1.8816 1.8816 -0.0000020034
2.0 2.3742 2.3743 -0.0000638807
3.0 2.5863 2.5864 -0.0000933201
4.0 2.6689 2.6691 -0.0001103656
5.0 2.7000 2.7002 -0.0001284242
6.0 2.7116 2.7117 -0.0001434300
7.0 2.7158 2.7160 -0.0001552112
8.0 2.7174 2.7175 -0.0001581733
9.0 2.7179 2.7181 -0.0001592608

10.0 2.7182 2.7183 -0.0001592537

ncall = 73

• An error tolerance reltol = 1.00e–004 means that four figures of accuracy
should be achieved in the numerical solution. In all cases, the numerical
solution met this tolerance, e.g.,

2.0 2.3742 2.3743 − 0.0000638807

indicates an error of −0.000064 or at least four figures in 2.3742. Similarly,
absrel = 1.00e–004 indicates an absolute accuracy of 0.0001, and this was
nearly achieved, e.g.,

10.0 2.7182 2.7183 − 0.0001592537

or an absolute error of −0.00016. The same general conclusions apply to
the other seven solutions. For example, with reltol = 1.00e–010, absrel =
1.00e–010, the solution was accurate to nearly ten figures for both mf = 1
and 2.

• The apparent computational effort, as measured by the number of deriva-
tive evaluations (calls to function ode1p7.m) differed substantially be-
tween ode23 and ode45.

mf = 1
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

ncall = 5392
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mf = 2
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

ncall = 385

Thus, the calls to ode45 were less than 1/10 those to ode23. This result
illustrates the relative efficiency of the higher-order method ((4, 5) is
more efficient than (2, 3)). Note that this is true even though the (2, 3)

pair requires the evaluation of k1, k2, and k3 while the (4, 5) pair requires
the evaluation ot k1, k2, k3, k4, k5, and k6, i.e., each ki evaluation adds one
derivative evaluation.

• For a general-purpose (library) ODE integrator, the coding for the prob-
lem and for the numerical integration algorithm should be separated. In
this way, the coding for a new problem can be written, then combined
with the coding for the algorithm (so that the algorithm coding remains
unchanged). This is illustrated in Program 1.7 in which the problem
ODE is defined in a function, in this case named ode1p7.m, and the algo-
rithms are contained in ode23 and ode45, which remain unchanged from
one problem to the next. We shall use this division between problem-
specific and general coding in the library routines to be considered subse-
quently. Note that this division was not used in Programs 1.1 to 1.6; in this
sense, Programs 1.3 and 1.6 are the worst examples in that the ODE RHS
(of Equation 1.3) was coded repeatedly (each time a ki was computed)
rather than coding it just once as in function ode1p7.m called by Program
1.7. While this repetitive coding of the ODE in Programs 1.1 to 1.6 was
not too cumbersome, we can imagine what it would be like, for exam-
ple, for a 1000x1000 ODE system, with all 1000 ODEs programmed for
each ki !

We should also consider briefly the choice of error tolerances (the indiscrim-
inate choice of error tolerances is probably the single most common reason
for the failure of numerical library routines such as ode23 and ode45). In this
case, there was only one dependent variable, y(t) defined by Equations 1.3
and 1.4. Further, since the range of values of y was approximately 1 ≤ y ≤ 3,
the choice of the same value for the relative and absolute tolerances was rea-
sonable (as suggested by the preceding discussion of the tolerances and the
resulting accuracy of the solutions).

However, the selection of a single tolerance for both the relative and ab-
solute errors, or even the same absolute error tolerance for a problem with
more than one dependent variable, is not always appropriate. For example,
if we are interested in solving a 2x2 problem, with y1 having a typical value
of 1000 (perhaps a temperature) and y2 having a typical value of 0.01 (per-
haps a concentration), we might select an absolute error tolerance of 0.1 for y1
(1 part in 10, 000), but this would be entirely too large for y2 (10 parts in 1!), and
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would result in a meaningless numerical solution for y2, and most likely for y1
as well since the ODEs for y1 and y2 would most certainly be connected, i.e.,

dy1

dt
= f1(y1, y2, t)

dy2

dt
= f2(y1, y2, t)

On the other hand, if we select an error tolerance of 0.000001 for y2 (1 part in
10,000), this would be excessively small for y1 (1 part in 1,000,000,000), and
would probably result in an excessively long computer run as the method
tried to adjust h to meet this overly stringent error tolerance.

The solution to this situation might appear to be to select a relative error
tolerance such as 0.0001 (0.01% accuracy). However, a relative error is mean-
ingful only if the corresponding dependent variables are not zero anywhere
along the solution (but the absolute error criterion would not fail at such
points). Thus, some care might also have to be given to the selection of a
relative error. In general, the specification of both a relative tolerance and an
absolute tolerance might avoid problems with error monitoring and control
(automatic selection of h), but, again, different absolute tolerances might have
to be selected for different dependent variables, and even different relative
tolerances might also have to be selected for different dependent variables (de-
pending on the sensitivity of the solution accuracy to the choice of the relative
tolerance). In general, the library ODE integration routines to be considered
subsequently will permit the selection of different relative and absolute tol-
erances for each dependent variable (but, again, appropriate values have to
be selected for each dependent variable, and indiscriminate choices without
much thought can lead to integrator failures, i.e., the failure to compute a
solution with acceptable accuracy, or to even compute any solution).

Parenthetically, function options will accept a vector for abstol and thus de-
fine an absolute error tolerance for each dependent variable (for the reason
explained with the preceding illustration of y1 and y2 having typical values
of 1000 and 0.01). However, reltol defined by a call to options will accept only
a scalar, so the same relative error tolerance is applied to all of the dependent
variables.

To conclude this section, we include Program 1.8 for the 2x2 problem of
Equations 1.6, 1.16, and 1.17, primarily to illustrate how ode23 and ode45 are
used for a problem with more than one ODE. Program 1.8 is listed below:

%
% Program 1.8
% 2 x 2 system of eqs. (1.6), (1.16), (1.17)
%
% Global variables

global a b;
%
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% Model parameters
a=5.5;
b=4.5;

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

%
% Initial condition

y10=0.0;
y20=2.0;
y0=[y10 y20]';

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p8',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p8',tout,y0,options); end

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n
reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t y1e y1 erry1\n
y2e y2 erry2\n');

for i=1:nout
lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t(i));
exp2=exp(lambda2*t(i));
y1e=(y10+y20)/2.0*exp1-(y20-y10)/2.0*exp2;
y2e=(y10+y20)/2.0*exp1+(y20-y10)/2.0*exp2;
erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
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fprintf('%5.1f%9.4f%9.4f%15.10f\n
%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

end
%
% Next case

end
%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y1(t),y2(t)')
title(' Program 1.8, 2 x 2 Linear System')
gtext('y1(t)');
gtext('y2(t)');
print pro1p8.ps

Program 1.8
Program for the integration of Equations 1.6, 1.16, and 1.17 by the library
integrators ode23 and ode45

We can note the following points about Program 1.8:

• The constants a and b in Equations 1.6, 1.16, and 1.17 are declared as
global, then assigned numerical values:

%
% Global variables

global a b;
%
% Model parameters

a=5.5;
b=4.5;

• As in Program 1.7, two methods are used (mf = 1 for ode23 and mf = 2
for ode45). For each of these methods, a set of four error tolerances is
used (again, these tolerances are appropriate for y1 and y2 since these
variables range over (approximately) 0 ≤ y1, y2 ≤ 2).

%
% Select method

for mf=1:2
%
% Error tolerances

reltol=1.0e-02;
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abstol=1.0e-02;
for ncase=1:4

reltol=1.0e-02*reltol;
abstol=1.0e-02*abstol;

• The variables controlling the integration are the same as in Program 1.7:

%
% Variables for ODE integration

t0=0.0;
tf=10.0;
tout=[t0:1.0:tf]';
nout=11;

Thus, the t scales for Programs 1.7 and 1.8 are the same, 0 ≤ t ≤ 10, but
clearly the t scale is problem dependent, and thus a final value of t = t f
must generally be selected for each new initial value problem. In other
words, we must select t f to be large enough to encompass the entire
solution, but not too large so that the essential details of the solution
are confined to a small interval in t (generally at the beginning of the
solution). The selection of an appropriate t scale is particularly important
for stiff ODEs, as we shall observe in the next section on stability.

• The initial condition is now set as a vector (with two components):

%
% Initial condition

y10=0.0;
y20=2.0;
y0=[y10 y20]';

Note that the last statement converts a row vector to a column vector
(through the transpose operator, ’) since an initial condition column vec-
tor is required by ode23 and ode45.

• ode23 and ode45 are called in the same way as in Program 1.7:

%
% Call ODE integrator

options=odeset('RelTol',reltol,'AbsTol',abstol);
if(mf==1)[t,y]=ode23('ode1p8',tout,y0,options); end
if(mf==2)[t,y]=ode45('ode1p8',tout,y0,options); end

The only difference is that function ode1p8 is used to define the ODEs,
Equations 1.6 and 1.16.

function yt=ode1p8(t,y)
%
% Set global variables

global a b;
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%
% ODEs

yt(1)=-a*y(1)+b*y(2);
yt(2)= b*y(1)-a*y(2);
yt=yt';

We can note the following points about ode1p8.m:
— A vector of derivatives, yt, with two elements is computed according

to the ODEs, Equations 1.6 and 1.16. In other words, the dependent
variable vector, y, is an input to ode1p8.m (generated by the integra-
tor, ode23 or ode45), and the derivative vector, yt, is the output from
ode1p8.m.

— Note also that this output derivative vector must be a column vector
(required by ode23 and ode45), so a transpose is taken at the end of
ode1p8.m.

• The numerical and exact solutions for y1 and y2 are then displayed (again,
the character strings are put on two lines so that they fit on a printed
page).

%
% Display solution and error

fprintf('\n\n mf = %1d\n case = %1d\n
reltol = %6.2e\n abstol = %6.2e\n\n',...
mf,ncase,reltol,abstol);

fprintf(' t y1e y1 erry1\n
y2e y2 erry2\n');

for i=1:nout
lambda1=-(a-b);
lambda2=-(a+b);
exp1=exp(lambda1*t(i));
exp2=exp(lambda2*t(i));
y1e=(y10+y20)/2.0*exp1-(y20-y10)/2.0*exp2;
y2e=(y10+y20)/2.0*exp1+(y20-y10)/2.0*exp2;
erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
fprintf('%5.1f%9.4f%9.4f%15.10f\n

%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

end

In computing the exact solutions, the two eigenvalues λ1 and λ2 of
Equations 1.16 are first computed (lambda1 and lambda2). The expo-
nentials in Equations 1.17 corresponding to these eigenvalues are then
computed (exp1 and exp2). Finally, the exact analytical solutions,
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Equations 1.17, are programmed (y1e and y2e), and then the correspond-
ing truncation errors, erry1 and erry2, are computed.

• Note also that ode23 and ode45 actually return a matrix as the solution, y,
consisting of nout rows (for the nout values of t), and two columns (for
the two dependent variables, y1 and y2). This matrix is then used in the
output lines:

erry1=y1e-y(i,1);
erry2=y2e-y(i,2);
fprintf('%5.1f%9.4f%9.4f%15.10f\n

%9.4f%9.4f%15.10f\n\n',...
t(i),y1e,y(i,1),erry1,y2e,y(i,2),erry2);

where i is set by the for statement

for i=1:nout

• After the two for loops (which set mf and ncase) are finished, the solution
is plotted (corresponding to mf = 2 and ncase = 4):

%
% Next case

end
%
% Next method

end
%
% Plot last solution

plot(t,y);
xlabel('t')
ylabel('y1(t),y2(t)')
title(' Program 1.8, 2 x 2 Linear System')
gtext('y1(t)');
gtext('y2(t)');
print pro1p8.ps

Note that function plot is able to accept the matrix y directly since it
checks for the correct number of rows in t (a column vector with nout
rows). The resulting plot is then written to the Postscript file pro1p8.ps
for storage.

The output from Program 1.8 is abbreviated below (to avoid excessive
printed output) for mf = 1 and 2, ncase = 1 and 4:
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mf = 1
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3679 -0.0000179424
0.3679 0.3679 0.0000643053

2.0 0.1353 0.1353 0.0000767180
0.1353 0.1353 0.0000769485

3.0 0.0498 0.0497 0.0001011036
0.0498 0.0497 0.0001052134

4.0 0.0183 0.0182 0.0000911283
0.0183 0.0182 0.0000835132

5.0 0.0067 0.0068 -0.0000336414
0.0067 0.0066 0.0001147145

6.0 0.0025 0.0026 -0.0001634482
0.0025 0.0023 0.0001981412

7.0 0.0009 0.0010 -0.0001346866
0.0009 0.0008 0.0001489110

8.0 0.0003 0.0004 -0.0001107129
0.0003 0.0002 0.0001164729

9.0 0.0001 0.0002 -0.0001063790
0.0001 0.0000 0.0001086973

10.0 0.0000 0.0001 -0.0000217537
0.0000 0.0000 0.0000226717
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mf = 1
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3678 0.0000000000
0.3679 0.3679 0.0000000000

2.0 0.1353 0.1353 0.0000000001
0.1353 0.1353 0.0000000001

3.0 0.0498 0.0498 0.0000000001
0.0498 0.0498 0.0000000001

4.0 0.0183 0.0183 0.0000000001
0.0183 0.0183 0.0000000001

5.0 0.0067 0.0067 0.0000000001
0.0067 0.0067 0.0000000001

6.0 0.0025 0.0025 0.0000000001
0.0025 0.0025 0.0000000001

7.0 0.0009 0.0009 0.0000000001
0.0009 0.0009 0.0000000001

8.0 0.0003 0.0003 0.0000000001
0.0003 0.0003 0.0000000001

9.0 0.0001 0.0001 0.0000000001
0.0001 0.0001 0.0000000001

10.0 0.0000 0.0000 0.0000000001
0.0000 0.0000 0.0000000001
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mf = 2
case = 1
reltol = 1.00e-004
abstol = 1.00e-004

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3678 -0.0000030880
0.3679 0.3679 0.0000032018

2.0 0.1353 0.1353 0.0000102110
0.1353 0.1353 -0.0000087609

3.0 0.0498 0.0498 0.0000169871
0.0498 0.0498 -0.0000174932

4.0 0.0183 0.0183 0.0000136219
0.0183 0.0183 -0.0000139397

5.0 0.0067 0.0068 -0.0000481707
0.0067 0.0067 0.0000480671

6.0 0.0025 0.0025 0.0000142956
0.0025 0.0025 -0.0000143637

7.0 0.0009 0.0009 -0.0000255897
0.0009 0.0009 0.0000255619

8.0 0.0003 0.0003 0.0000202537
0.0003 0.0004 -0.0000202664

9.0 0.0001 0.0001 0.0000139694
0.0001 0.0001 -0.0000139749

10.0 0.0000 0.0000 0.0000145650
0.0000 0.0001 -0.0000145673
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mf = 2
case = 4
reltol = 1.00e-010
abstol = 1.00e-010

t y1e y1 erry1
y2e y2 erry2

0.0 0.0000 0.0000 0.0000000000
2.0000 2.0000 0.0000000000

1.0 0.3678 0.3678 0.0000000000
0.3679 0.3679 0.0000000000

2.0 0.1353 0.1353 0.0000000000
0.1353 0.1353 0.0000000000

3.0 0.0498 0.0498 0.0000000000
0.0498 0.0498 0.0000000000

4.0 0.0183 0.0183 0.0000000000
0.0183 0.0183 0.0000000000

5.0 0.0067 0.0067 0.0000000000
0.0067 0.0067 0.0000000000

6.0 0.0025 0.0025 0.0000000000
0.0025 0.0025 0.0000000000

7.0 0.0009 0.0009 0.0000000000
0.0009 0.0009 0.0000000000

8.0 0.0003 0.0003 0.0000000000
0.0003 0.0003 0.0000000000

9.0 0.0001 0.0001 0.0000000000
0.0001 0.0001 0.0000000000

10.0 0.0000 0.0000 0.0000000000
0.0000 0.0000 0.0000000000

Generally we can conclude that the error monitoring and control (auto-
matic h adjustment) worked as expected for both ode23 and ode45. The plot
for mf = 2, ncase = 4 appears in Figure 1.5. We can note in Figure 1.5 the initial
conditions y1(0) = 0, y2(0) = 2 of Equations 1.6; as the solution evolves, the
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FIGURE 1.5
Solution of Equations 1.6, 1.16, from Program 1.8, mf = 2, ncase = 4.

two components, y1(t), y2(t) come together at approximately t = 1, then fol-
low a common path. This is consistent with the analytical solution, Equation
1.17. At t = 1 the exponential eλ2t = e−(a+b)t = e−(5.5+4.5)t = e−10t decays to
insignificance in both y1(t) and y2(t); the two solutions then decay according
to the exponential eλ1t = e−(a−b)t = e−(5.5−4.5)t = e−t, and we need to compute
to t = 10 for this exponential to fully decay.

This is a common feature of the solution to simultaneous linear ODEs. In
particular:

• There is an initial interval, e.g., 0 ≤ t ≤ 1, in which all of the expo-
nentials (for all of the ODE eigenvalues) are significant. However, the
exponentials with the largest eigenvalues, in this case λ2 = −10 decay
rapidly.

• If the eigenvalues are complex, then the magnitudes of their real parts
determine how long this initial transient or boundary layer persists (and,
of course, the real parts should all be negative for the ODE system to be
stable; if any of the eigenvalues have positive real parts, the correspond-
ing exponentials will grow with increasing t).

• Once this initial transient is past, the solutions decay according to
the smallest eigenvalues, in this case λ1 = −1, which defines the to-
tal t scale of the solution to be approximately 0 ≤ t ≤ 10 (as reflected in
Figure 1.5).
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• If the eigenvalues are widely separated (a stiff system), the initial transient
determined by the largest eigenvalues will be very short (and thus will
require many small integration steps for an accurate solution in this
interval). However, the total length or scale of the solution in t will be
determined by the smallest eigenvalues, but small steps will still have to
be taken throughout the entire solution to maintain stability with a nonstiff
(explicit) integrator such as the ones we have considered so far. It is
this combination of small h to cover a large interval in t that makes stiff
ODE systems relatively difficult to solve numerically with a nonstiff
integrator.

We now consider some of the stability properties of ODE integrators for stiff
and nonstiff ODEs. In other words, in addition to the previous consideration
of accuracy, typically in the form of the order conditions, e.g., O(h p), p =
1, 2, 3, 4, 5, we must also consider a second important limitation of numerical
integration algorithms, their stability, which is discussed in the next, and final,
section of this chapter.

1.7 Stability of RK Methods

So far, we have assumed that h will somehow be selected (either manually as
in Programs 1.1 to 1.6, or automatically as in Programs 1.7 and 1.8) so as to
achieve a numerical ODE solution of acceptable accuracy. Thus accuracy, at
least so far in this discussion, has determined h. However, there are situations
for which h must be reduced to a level that ensures a stable numerical solution,
and this restriction on h will occur at a smaller value of h than that determined
by accuracy. The class of problems for which stability limits h is termed stiff.

We start the discussion of stability by considering the model ODE (Equation
1.22) dy/dt = λy, y(0) = y0, where we have chosen real(λ), < 0 so that the
solution

y(t) = y0eλt (1.52)

is stable (decays exponentially with t). If we apply the Euler method, Equation
1.19 or 1.28, to this system, starting at the initial condition y(0) = y0,

y1 = y0 + dy0

dt
h = y0 + (λy0)h = y0(1 + λh)

For the next step from y1 to y2

y2 = y1 + dy1

dt
h = y1 + (λy1)h = y1(1 + λh) = y0(1 + λh)(1 + λh) = y0(1 + λh)2
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In general, after n steps to go from y0 to yn

yn = y0(1 + λh)n (1.53)

We can consider how this Euler solution (Equation 1.53) compares with the
exact solution, Equation 1.52:

λh = −2 n yn

1 y1 = y0(1 − 2) = −y0
2 y2 = y1(1 − 2) = −y0(−1) = y0
3 y3 = y2(1 − 2) = y0(−1) = −y0, etc.

λh = −3 n yn

1 y1 = y0(1 − 3) = −2y0
2 y2 = y1(1 − 3) = −2y0(−2) = 4y0
3 y3 = y2(1 − 3) = 4y0(−2) = −8y0, etc.

λh = −0.5 n yn

1 y1 = y0(1 − 0.5) = 0.5y0
2 y2 = y1(1 − 0.5) = 0.5y0(0.5) = 0.25y0
3 y3 = y2(1 − 0.5) = 0.25y0(0.5) = 0.125y0, etc.

When |λh| = 2 (i.e., λh = −2), the solution oscillates between y0 and −y0
(when it should decay according to Equation 1.52). When |λh| > 2 (i.e., λh =
−3), the solution grows in amplitude from y0 to −2y0 to 4y0, etc. (the solution
is unstable). However, when |λh| < 2 ( i.e., λh = −0.5), the solution decays
(and is therefore stable). Thus, |λh| = 2 is the stability limit of the Euler method
when applied to this model problem (Equation 1.22).

Also, since the eigenvalues of ODEs can, in general, be complex, the stability
criterion |λh| = 2 defines a circle in the complex plane with center at (−1, i0)

and unit radius as illustrated in Figure 1.6. Note, in particular, the stability
interval −2 ≤ λh ≤ 0 along the negative real axis when λ is real and negative
(corresponding to a stable solution from Equation 1.52), and h is positive (the
case we have considered, although the previous integration methods are valid
for negative h corresponding to integration in the direction of decreasing t).

We can establish the stability region of Figure 1.6 for the Euler method (the
interior of the circle is the stable region) by plotting a series of points in the
complex plane corresponding to a series of values of λh. Consider the step-
ping formula for the Euler method from point yi to point yi+1, Equation 1.19. If
the numerical solution from this stepping formulas is to be stable, we require

∣∣∣∣ yi+1

yi

∣∣∣∣ ≤ 1

In other words, the absolute value of the solution at i + 1 should be less than
or equal to the absolute value at i as, for example, in the exponential decay
of Equation 1.52 (the ratio |yi+1/yi | is generally called the amplification factor
or stability function, and it should be less than one for a stable solution).
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FIGURE 1.6
The stability region of the Euler method.

For the Euler method applied to the model ODE dy/dt = λy, y(0) = y0
(Equation 1.22)

yi+1 = yi + dyi

dt
h = yi + (λyi )h = yi (1 + λh)

or
yi+1

yi
= 1 + (λh)

For this ratio to have an absolute value of 1, even for complex λ, we require

1 + (λh) = eiθ

eiθ is a complex variable with unit magnitude, i.e.,
∣∣eiθ

∣∣ = 1. Since eiθ =
cos θ + i sin θ (the Euler identity),

1 + Re(λh) + i Im(λh) = cos θ + i sin θ

so that

Re(λh) = cos θ − 1

Im(λh) = sin θ
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We can determine the values of Re(λh) and Im(λh) for a selected sets of
values of θ

θ eiθ λh

0 1 + i0 0 + i0
π/4 1/

√
2 + i(1/

√
2) (1/

√
2 − 1) + i(1/

√
2)

π/2 0 + i1 −1 + i1
3π/4 −1/

√
2 + i(1/

√
2) (−1/

√
2 − 1) + i(1/

√
2)

π −1 + 0i −2 + i0
5π/4 −1/

√
2 − i(1/

√
2) (−1/

√
2 − 1) − i(1/

√
2)

3π/2 0 − i1 −1 − i1
7π/4 1/

√
2 − i(1/

√
2) (1/

√
2 − 1) − i(1/

√
2)

2π 1 + i0 0 + i0

If Re(λh) is plotted vs. Im(λh), the resulting figure is a circle, centered
at (−1, i0) with unit radius (see Figure 1.6). If h is chosen so that the com-
plex point λh falls outside the circle, the numerical solution will be unstable
(since |yi+1/yi | > 1). Thus, a stability limit is placed on h for the explicit Euler
method.

Usually, the accuracy requirement will set the step h to a value smaller
than for |λh| = 2, as discussed previously. However, there is an exception to
this conclusion. Consider the 2x2 system of Equations 1.6 and the analytical
solution, Equation 1.17, for the special case y1(0) = 0, y2(0) = 2

y1(t) = eλ1t − eλ2t (1.54a)

y2(t) = eλ1t + eλ2t (1.54b)

for which the eigenvalues are λ1 = −(a −b), λ2 = −(a +b) as noted previously
(recall again how Equations 1.54 appear numerically in Figure 1.5 for a =
5.5, b = 4.5 and λ1 = −1, λ2 = −10).

We now consider some additional particular values for a and b

Values of a, b Values of λ1,λ2
|λ2|
|λ1|

and Description

Case 1

a = 50.5 λ2 = −100
|λ2|
|λ1| = 100

b = 49.5 λ1 = −1 nonstiff

Case 2

a = 500.5 λ2 = −1000
|λ2|
|λ1| = 1000

b = 499.5 λ1 = −1 moderately stiff

Case 3

a = 500, 000.5 λ2 = −1, 000, 000
|λ2|
|λ1| = 1, 000, 000

b = 499, 999.5 λ1 = −1 stiff
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Consider the maximum Euler step for the stiff case. If λ2 = −1, 000, 000, the
maximum stable step is given by |λh| = 2 or h = 2/1, 000, 000 = 0.000002.
However, to compute a complete solution, we require a final t given approx-
imately by λ1t ≈ −10 (or t = 10 so that exp(λ1t) = exp(−10) has decayed
to insignificance compared to the initial condition y2(0) = 2). Thus, we must
take 10/0.000002 = 5 × 106 steps! If this does not seem like a large number of
steps, consider a = 500, 000, 000.5, b = 499, 999, 999.5 for which the ratio

|largest eigenvalue|
|smallest eigenvalue| = |λmax|

|λmin| = |λ2|
|λ1| = 109

and 5×109 steps would be required to compute a complete solution (physical
problems in which this stiffness ratio = |λmax|/|λmin| = 1012 to 1015 are not
unusual).

As an incidental point, note that the calculation of λ1 requires a subtraction,
λ1 = −(a − b). If a and b are nearly equal, e.g., a = 500, 000.5, b = 499, 999.5,
then this subtraction might be done with substantial error. For example, if
the machine precision (often termed the machine epsilon or unit roundoff) is 10−7

(one part in 107) corresponding to 32-bit arithmetic, this stiff ODE system
could not be integrated numerically since the calculation of (a − b) requires
a precision better than more than one part in 107. Although this is a heuris-
tic argument, generally the conclusion is correct, i.e., stiff systems require a
precision that is substantially better than set by |λmax|/|λmin| (1, 000, 000 in
the preceding example). As an example of available precision, the machine
epsilon for MATLAB and Java is approximately 10−15 so that an ODE sys-
tem with a stiffness ratio approaching 1015 can be accommodated with these
systems.

Thus, if we require the solution to a system of stiff ODEs, we should not use
the Euler method (because of the stability limit |λh| = 2). We might consider
a higher-order method, e.g., the modified Euler method of Equation 1.29, the
classical fourth-order RK method of Equations 1.50, but if we do a similar
stability analysis, we arrive at a stability limit that is not much greater than
for the Euler method. For example, consider application of the fourth-order
RK of Equations 1.50 to the model ODE (Equation 1.22) dy/dt = λy, y(0) = y0,
where we have chosen real(λ) < 0 so that the solution, Equation 1.52 (or yi eλh

for one step h as noted after Equation 1.22), is stable. The RK constants for the
model problem are

k1 = f (yi , ti )h = λyi h

k2 = f (yi + k1/2, ti + h/2)h = λ(yi + λhyi/2)h

k3 = f (yi + k2/2, ti + h/2)h = λ[yi + λ(yi + λhyi/2)h/2]h

k4 = f (yi + k3, ti + h)h = λ{yi + λ[yi + λ(yi + λhyi/2)h/2]h}h
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and the stepping formula is

yi+1 = yi + (1/6)(k1 + 2k2 + 2k3 + k4)

= yi + (1/6)[λhyi + 2λ(yi + λhyi/2)h + 2λ[yi + λ(yi + λhyi/2)h/2]h

+λ{yi + λ[yi + λ(yi + λhyi/2)h/2]h}h]

= yi {1 + (1/6)[(1 + 2 + 2 + 1)(λh) + (1/6)(1 + 1 + 1)(λh)2

+(1/6)(1/2 + 1/2)(λh)3 + (1/6)(1/4)(λh)4]}
= yi (1 + (λh)/1! + (λh)2/2! + (λh)3/3! + (λh)4/4!) (1.55a)

Since the exact solution to the model problem is y = y0eλt for the distance
t = h, the solution changes from yi to yi+1 according to the exact solution

yi+1 = yi eλh = yi (1+ (λh)/1!+ (λh)2/2!+ (λh)3/3!+ (λh)4/4!+· · ·) (1.55b)

Thus, the RK stepping formula fits the Taylor series solution of the ex-
act solution up to and including the (λh)4 term (up to and including the
(d4 yi/dt4)(h4/4!) term), as expected (compare Equations 1.55). Also, although
the exact solution, Equation 1.55b, is stable for λ < 0, the approximate so-
lution, Equation 1.55a, is not necessarily stable (because of the truncation).
In fact, we can chose h large enough to make the solution of Equation 1.55a
unstable.

Again, if the numerical solution is to remain stable, we require |yi+1/yi | ≤ 1.
Thus, for the limiting value |yi+1/yi | = 1

∣∣1 + (λh)/1! + (λh)2/2! + (λh)3/3! + (λh)4/4!
∣∣ = 1 (1.55c)

and we can consider what values of λh will satisfy Equation 1.55c. Clearly
real(λh) < 0. If λh = −2.785,

1 + (−2.785)/1! + (−2.785)2/2! + (−2.785)3/3! + (−2.785)4/4! = 1

1 − 2.785 + 3.878 − 3.600 + 2.507 = 0.9996 ≈ 1

Thus, in place of the stability criterion for the Euler method, |λh| = 2, we
have for the fourth-order RK method along the negative real axis |λh| = 2.785.
In other words, the stability is not improved very much by going to a higher-
order RK (or, in general, an explicit) method. For example, for the stiff case
a = 500, 000.5, b = 499, 999.5 considered previously, for which the maximum
stable step for the Euler method was h = 0.000002, the maximum stable step
is now h = 0.000002785, and the required number of steps for a complete so-
lution is reduced from 10/0.000002 = 5.0×106 to 10/0.000002785 = 3.59×106

(not a very significant reduction, particularly when we recall that the classi-
cal fourth-order RK of Equations 1.50 requires four derivative evaluations for
step h while the Euler method requires only one derivative evaluation).
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We could also repeat the previous calculations for the Euler method to de-
termine the stability region for the fourth-order RK method that is analogous
to the circle in Figure 1.6, that is, by finding the values of λh that satisfy

1 + (λh)/1! + (λh)2/2! + (λh)3/3! + (λh)4/4! = eiθ (1.55d)

This calculation is a little more involved than for the Euler method, so we
merely state that the resulting stability diagram is in Schiesser,4 p. 157; Fortran
and MATLAB program to calculate the boundary of the stability region is
available from the authors (W.E.S.).

In summary, any explicit method will have a stability limit similar to the
Euler method. So we might logically pose the question, “How do we efficiently
compute the solution to a stiff ODE system?” The answer is that we must use
an implicit algorithm (which generally will have a much larger stability region
than an explicit method). Another way we can understand the stability limit of
the explicit Euler method, Equation 1.19 (in addition to the preceding analysis
which led to |λh| = 2), is to recall the projection along a straight line in Figure
1.1. Specifically, if any eigenvalue of an ODE system is large, the solution
changes rapidly (with respect to t), and the projection will therefore be highly
inaccurate in going from yi to yi+1 unless h is very small. One way to avoid
this required use of a small h is to evaluate the derivative dy/dt at i + 1 rather
than at i , i.e., to use the implicit Euler method

yi+1 = yi + dyi+1

dt
h (1.56)

To show that using Equation 1.56 will be effective for stiff ODEs, we can
repeat the preceding stability analysis for the ODE dy/dt = λy, y(0) = y0,
where we have again chosen real(λ) < 0 so that the exact solution y(t) = y0eλt

is stable (decays exponentially with t). If we apply the implicit Euler method,
Equation 1.56, to this system,

y1 = y0 + dy1

dt
h = y0 + (λy1)h or y1/y0 = 1

1 − λh

For the next step

y2 = y1 + dy2

dt
h = y1 + (λy2)h or

y2

y1
= 1

1 − λh

Then for two steps

y2

y0
= y2

y1

y1

y0
=

(
1

1 − λh

) (
1

1 − λh

)
=

(
1

1 − λh

)2

In general, after n steps

yn = y0

(
1

1 − λh

)n

(1.57)
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We can again consider how this Euler solution (Equation 1.57) compares
with the exact solution, y(t) = y0eλt. A few specific values of the numerical
solution are computed as before

λh = −2 n yn

1 y1 = y0/(1 + 2) = y0/3
2 y2 = y1/(1 + 2) = y0(1/3)2

3 y3 = y2/(1 + 2) = y0(1/3)3 etc.

Note that the solution decays in contrast to the explicit Euler method. This
decay will occur no matter how large h is (in fact, the decay is faster with
increasing h), so the implicit Euler method has no limit on λh with respect
to stability, i.e., the implicit Euler method is unconditionally stable. The step h is
therefore only limited by accuracy.

However, there is generally a price to be paid for the enhanced stability of
implicit methods. If the model equation is

dy
dt

= f (y, t)

and f (y, t) is nonlinear, then application of the implicit Euler method,
Equation 1.56, gives

yi+1 = yi + dyi+1

dt
h = yi + f (yi+1, ti+1)h

Note that the solution at the advanced point, yi+1, now appears on both sides
of the stepping formula, and we therefore must solve a nonlinear equation to
compute yi+1. Thus, the price we pay in general when using implicit methods
is the solution of systems of nonlinear (algebraic) equations. For stiff ODEs, the
additional effort of solving systems of nonlinear equations is usually well
worthwhile since much larger integration steps are possible because of the
improved stability characteristics of implicit methods (for example, for the
previous stiff problem with λ1 = −1, λ2 = −1, 000, 000, rather than 5 × 106

required steps for the explicit Euler method, probably a few hundred steps
would be sufficient with the implicit Euler method to achieve reasonable ac-
curacy since stability is not an issue; thus orders-of-magnitude reductions in
the number of integration steps can be achieved by using an implicit integra-
tor). Conversely, using a stiff (implicit) integrator on a nonstiff problem will
waste computer time since the solution of nonlinear equations is unnecessary
(as we observed in Programs 1.1 to 1.6).

We concluded the implicit Euler method is unconditionally stable, but it
also has low accuracy (it is first order). Thus, we seek integration algorithms
that have good stability and good accuracy. A widely used implicit method for
stiff ODEs that has good combined stability and accuracy is based on the
backward differentiation formulas (BDFs), which have the following general
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form (References 5 and 6, pp. 183–184). The BDF stepping formula is

α0 yi+1 + α1 yi + · · · + αν yi−ν+1 = h f (yi+1ti+1) (1.58)

for dy/dt = f (y, t), where ν is the order of the method (that defines the coef-
ficients in a particular row of the following table of coefficients)

ν α0 α1 α2 α3 α4 α5 α6

1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3
4 25/12 −4 3 −4/3 1/4
5 137/60 −5 −10/3 5/4 −1/5
6 147/60 −6 15/2 −20/3 15/4 −6/5 1/6

Note that the solution at the advanced point, yi+1, appears on both sides
of the stepping formula, Equation 1.58, so that in general the calculation of
yi+1 requires the solution of a nonlinear equation (if f (y, t) from the ODE
is nonlinear), or systems of nonlinear algebraic equations for the nxn ODE
problem.

The first-order BDF method (ν = 1) is just the implicit Euler method,
Equation 1.56; note the weighting coefficients α0 = 1, α1 = −1) from the
preceding table for which Equation 1.58 can be written as

α0 yi+1 + α1 yi = h f (yi+1ti+1)

or

(1)yi+1 + (−1)yi = h f (yi+1ti+1)

which is the implicit Euler method, Equation 1.56.
As we noted previously, the implicit Euler method is stable over the entire

left half of the complex plane. However, it has limited accuracy; recall from
Figure 1.1 that the Euler method is based on a first-order polynomial (linear
approximation to the ODE solution), which is the case for both the explicit and
implicit Euler methods (both are O(h)). For ν = 2, . . . , 6, the BDF methods
are based on second- to sixth-order polynomial approximations of the ODE
solution, which accounts for their good accuracy.

The BDF methods are implemented in the MATLAB routines ode23s and
ode15s (presumably the “s” in these names denotes “stiff”). State-of-the-art
implementations of the BDFs are available in the routines LSODE, LSODES,
and DASSL (References 4, 7, pp. 55–64, and 8) that vary both ν and h auto-
matically (termed variable order-variable step implementations).

The stability properties of the BDFs are summarized by their stability dia-
grams, which are presented in Reference 4, p. 163 (Fortran and MATLAB pro-
grams for calculating the stability boundaries are available from the authors
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(W.E.S.)). In particular, for ν = 1, the unstable region is within a circle centered
at (1, i0) with unit radius. This follows from Equation 1.57 in the same way
that we established the stability domain for the explicit Euler method from
Equation 1.53. Specifically,

• If λh = (1, i0) (real 1), there will be a division by zero in Equation 1.57.
This demonstrates why the circle of instability for the implicit Euler
method is centered at (1, 0i).

• As we move away from (1, 0i), the instability remains until we reach the
boundary of the circle where the implicit Euler method switches from
unstable to stable (the amplification factor from Equation 1.57,

∣∣∣∣ yi+1

yi

∣∣∣∣ =
∣∣∣∣ 1
1 − λh

∣∣∣∣
switches from >1 to <1).

• Since we are discussing the right half of the complex plane, for which λ

has a positive real part, the exact solution to the ODE is unstable (grows
exponentially with increasing t). This is an unusual situation in most ap-
plications of ODEs (e.g., unstable physical systems); in other words, the
left half of the complex plane (where the real parts of all the ODE eigen-
values are negative) is usually of primary interest in applications. For
the left half plane, the implicit Euler method is unconditionally stable.

• For the BDF order ν > 2, the BDF methods have a region along the imag-
inary axis in the left half plane for which these methods are unstable.

• This region of instability in the left half plane becomes larger with in-
creasing ν.

In summary, the entire left half of the complex plane is unconditionally
stable for ν ≤ 2, but a portion of the left half plane along the imaginary axis is
unstable for ν ≥ 3, and this unstable region increases in size with increasing
ν. Thus, stiff ODEs with complex eigenvalues that fall close to the imagi-
nary axis may cause long computer runs due to the limited stability along
the imaginary axis (for this case, limiting ν to 2 can often increase the com-
putational efficiency substantially, even though the order is relatively low).
All of the BDFs for ν ≤ 6 are unconditionally stable along the negative real
axis. These properties are readily observed in the BDF stability diagrams cited
previously.4

We should also note that the BDF stepping formula, Equation 1.58, requires
a series of values prior to yi+1, i.e., yi , yi−1, . . . , yi−ν+1. At the beginning of the
solution, when only one value is available, the initial condition y0, we cannot
use Equation 1.58 unless we start with the first-order method corresponding
to ν = 1. This will permit the calculation of y1 and now we have two past
values to calculate y2, etc. Thus, we must build up the required past values
starting with the ν = 1 method (the implicit Euler method). In other words,
the BDFs for ν > 1 are not self-starting.
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On the other hand, the RK methods are self-starting since their stepping for-
mulas involve just yi to calculate yi+1. Thus, we can use RK methods to cal-
culate the first several values required by the BDF methods. However, for
stiff problems, this requires the use of implicit RK methods (which we have not
considered in the preceding discussion). Implicit RK methods are available,
and have been implemented in a quality code, RADAU5.9

Finally, an extensive library of quality public domain scientific software
is available from the Internet.10 This library includes the source code for an
extensive set of ODE integrators, including LSODE, LSODES, and DASSL.
Since stiff ODE systems are an important class of initial value ODE prob-
lems, additional discussion of stiff integrators is given in Appendix C. In
particular,

• The 2x2 system of Equations 1.6 for the stiff case a = 500, 000.5, b =
499, 999.5 is integrated by a fixed-step prototype BDF integrator for ν = 1
(implicit Euler method) using MATLAB. This prototype illustrates the
solution of the nonlinear equations required by an implicit integrator
using Newton’s method. MATLAB programs for ν = 2, 3 are available
from the authors (W.E.S.).

• The same 2x2 problem is integrated using ode23s and ode45s to demon-
strate both the stability and accuracy of these integrators. These pro-
grams can easily be modified for application to other stiff ODE problems.

This completes the introduction to ODE integrators, principally for the
explicit RK integrator pairs (1, 2), (2, 3), (2, 4), and (4, 5) that are implemented
in the routines to be discussed in the remainder of this book. We start with the
solution of the 1x1 ODE system of Equations 1.3, 1.4, and 1.5 using integrators
that vary h to achieve a prescribed accuracy, that is, variable step explicit RK
integrators.
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2
Solution of a 1 x 1 ODE System

In this and subsequent chapters, we consider the programming of (a) the
two ODE problems discussed in Chapter 1 and (b) two PDE problems. We
start in this chapter with the 1x1 ODE problem of Equations 1.3 and 1.4,
with the analytical solution of Equation 1.5. For each problem, we discuss the
programming in C, C++, Fortran, Java, Maple, and MATLAB (these program-
ming languages are listed here in alphabetical order, but they generally will
be considered in a different order in the subsequent discussion).

The intention in providing the solutions of the four test problems is to give
the reader enough detail that the programming of other ODE/PDE problems
should be facilitated, possibly by using the programs presented as starting
points, i.e., templates that can be used for new problems. Also, the program-
ming of a common problem in all six languages should facilitate the conver-
sion from one language to another (through a comparison of the correspond-
ing coding).

2.1 Programming in MATLAB

A main program for the numerical integration of Equation 1.3 subject to initial
condition Equation 1.4 is listed below:

%
% Main program ode1x1 computes the numerical
% solution to the 1 x 1 ODE system by one of
% six integrators
%
% Set integration parameters

[neqn,nout,nsteps,int,t0,tf,abserr,relerr]=intpar;
%

107
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% Initial condition vector
[u0]=inital(neqn,t0);

%
% Output interval

tp=tf-t0;
%
% Compute solution at nout output points

for j=1:nout
%
% Print current solution

[out]=fprint(int,neqn,t0,u0);
%
% Fixed step modified Euler integrator

if int == 1
[u]=euler2a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step modified Euler integrator

if int == 2
[u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step classical fourth order RK integrator

if int == 3
[u]=rkc4a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step classical fourth order RK integrator

if int == 4
[u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step RK Fehlberg (RKF45) integrator

if int == 5
[u]=rkf45a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step RK Fehlberg (RKF45) integrator

if int == 6
[u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Advance solution

t0=tf;
tf=tf+tp;
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u0=u;
%
% Next output

end
%
% End of ode1x1

Program 2.1.1
MATLAB main program for the numerical integration of Equation 1.3 subject
to initial condition Equation 1.4

We can note the following points about the preceding program:

• Function intpar is called to set the parameters that control the numerical
integration of Equation 1.3.

%
% Set integration parameters

[neqn,nout,nsteps,int,t0,tf,abserr,relerr]=intpar;

intpar will be subsequently listed and discussed.
• Function inital is then called to set initial condition Equation 1.4

%
% Initial condition vector

[u0]=inital(neqn,t0);

neqn, the number of first-order ODEs, in this case, 1 for Equation 1.3, was
set by the call to intpar and is an input to inital; similarly, the initial value
of the independent variable, t0 was set to 0 (zero) by the call to intpar.
inital is listed below:

function [u0]=inital(neqn,t)
%
% Function inital sets the initial condition vector
% for the 1 x 1 ODE problem
%

u0(1)=1.0;
%
% End of inital

Program 2.1.2
Function inital for initial condition Equation 1.4

Note that the initial condition of Equation 1.4 is 1.0. Also, the initial value
of the dependent variable is actually in a 1D array or a column vector u0, with
a subscript 1. Note that the array is automatically defined by MATLAB, and
does not have to be sized in a declarative statement.
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• The interval in the independent variable, tp for the output of the numer-
ical solution is the difference between the final value of the independent
variable, t f , set to 1.0 in intpar and the initial value of the independent
variable, t0 = 0.0.

%
% Output interval

tp=tf-t0;

• The numerical solution is then computed and displayed at nout output
points, with nout set in intpar to 6:

%
% Compute solution at nout output points

for j=1:nout
%
% Print current solution

[out]=fprint(int,neqn,t0,u0);

At the beginning of each pass through this for loop, function fprint is
called to display (output) the solution. For the first pass through the
loop ( j = 1), the initial conditions set in inital are displayed. Function
fprint is subsequently listed and displayed.

• Within the for loop, one of six integrators is called using int, which is set
in intpar. The values of int and the corresponding integrators are listed
below:

int Integration algorithm
Discussion in Chapter 1
MATLAB function

1 Fixed step modified Euler
Equations 1.26, 1.27, 1.28, 1.29, 1.30
euler2a

2 Variable step modified Euler
Discussion after Equations 1.26
euler2b

3 Fixed step classical fourth-order RK
Equations 1.50, 1.51, Section 1.5
rkc4a

4 Variable step classical fourth-order RK
Equations 1.50, 1.51, discussion after Equations 1.26
rkc4b

5 Fixed step Runge Kutta Fehlberg 45
Equations 1.49, Section 1.5
rk f 45a

6 Variable step Runge Kutta Fehlberg 45
Equations 1.49, discussion after Equations 1.26
rk f 45b



Solution of a 1 x 1 ODE System 111

The calls to these six integrators, determined by the value of int, are listed
below:

%
% Fixed step modified Euler integrator

if int == 1
[u]=euler2a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step modified Euler integrator

if int == 2
[u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step classical fourth order RK integrator

if int == 3
[u]=rkc4a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step classical fourth order RK integrator

if int == 4
[u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end
%
% Fixed step RK Fehlberg (RKF45) integrator

if int == 5
[u]=rkf45a(neqn,t0,tf,u0,nsteps);

end
%
% Variable step RK Fehlberg (RKF45) integrator

if int == 6
[u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr);

end

Each of these ODE integrators are listed and discussed subsequently.
• After an interval tp is covered by the numerical integration from one of

the six integrators, the solution is used as the starting point (in effect, a
new initial condition), for the next interval, tp. Note that although u0 and
u are 1D arrays (vectors), MATLAB automatically handles the individual
elements of these arrays, i.e., indexing of the elements of these arrays is
not required.

%
% Advance solution

t0=tf;
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tf=tf+tp;
u0=u;

%
% Next output

end
%
% Complete solution computed

The end statement terminates the for loop (i.e., serves as the final state-
ment in the loop to initiate the next pass through the loop). When all nout
passes through the loop have been completed, the execution of ode1x1
is complete (in this case, a total of six passes since nout = 6).

The setting of the integration control parameters in intpar has been covered
to some extent in the preceding discussion. The remaining parameters that
are set are indicated in the following listing of intpar:

function [neqn,nout,nsteps,int,t0,tf,abserr,relerr]=intpar
%
% Function intpar sets the parameters to control the
% integration of the 1 x 1 ODE system
%
% Number of first order ODEs

neqn=1;
%
% Number of output points

nout=6;
%
% Maximum number of steps in the interval t0 to tf

nsteps=100;
%
% Integrator

int=1;
%
% Initial, final values of independent variable

t0=0.0;
tf=1.0;

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

%
% End of intpar

Program 2.1.3
Function intpar called in Program 2.1.1 to set the integration parameters
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The code in intpar that was not previously discussed is as follows:

• The maximum number of steps that an integrator will take over the
interval t0 ≤ t ≤ tf:

%
% Maximum number of steps in the interval t0 to tf

nsteps=100;

• Selection of integrator 1 (euler2a ):

%
% Integrator

int=1;

• Specification of the integration error tolerances:

%
% Error tolerances

abserr=1.0e-05;
relerr=1.0e-05;

All of these parameters are used to control the numerical integration of
Equation 1.3 by serving as inputs to one of the six integrators (euler2a in
this case since int = 1).

Function fprint is listed below:

function [out]=fprint(ncase,neqn,t,u)
%
% Function fprint displays the numerical and
% exact solutions to the 1 x 1 ODE problem
%
% Return current value of independent variable
% (MATLAB requires at least one return argument)

out=t;
%
% Problem parameters

u0=1.0;
alpha=1.0;
lambda=1.0;

%
% Print a heading for the solution at t = 0

if(t<=0.0)
%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');
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%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' t u1 u1e u1-u1e\n');
%
% End of t = 0 heading

end
%
% Numerical and analytical solution output
%
% Analytical solution

ue(1)=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));
%
% Difference between exact and numerical solutions

diff=u-ue;
%
% Display the numerical and exact solutions, and their
% difference

fprintf('%10.2f %10.5f %10.5f %10.5f\n',t,u,ue(1),
diff);

%
% End of fprint

Program 2.1.4
Function fprint called by Program 2.1.1 to display the numerical and analytical
solutions to Equations 1.3 and 1.4
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We can note the following points about fprint:

• The parameters for the analytical solution, Equation 1.5, are first set:

%
% Problem parameters

u0=1.0;
alpha=1.0;
lambda=1.0;

• A heading for the output is then displayed at t = 0:

%
% Print a heading for the solution at t = 0

if(t<=0.0)
%
% Label for ODE integrator
%
% Fixed step modified Euler

if(ncase==1)
fprintf('\n\n euler2a integrator\n\n');

%
% Variable step modified Euler

elseif(ncase==2)
fprintf('\n\n euler2b integrator\n\n');

%
% Fixed step classical fourth order RK

elseif(ncase==3)
fprintf('\n\n rkc4a integrator\n\n');

%
% Variable step classical fourth order RK

elseif(ncase==4)
fprintf('\n\n rkc4b integrator\n\n');

%
% Fixed step RK Fehlberg 45

elseif(ncase==5)
fprintf('\n\n rkf45a integrator\n\n');

%
% Variable step RK Fehlberg 45

elseif(ncase==6)
fprintf('\n\n rkf45b integrator\n\n');

end
%
% Heading

fprintf(' t u1 u1e u1-u1e\n');
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%
% End of t = 0 heading

end

Basically, this heading displays the particular integrator used (through
the value of int) and identifies the tabular numerical output.

• The analytical solution, Equation 1.5, and the difference between the
numerical and analytical solutions are then computed:

%
% Numerical and analytical solution output
%
% Analytical solution

ue(1)=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));
%
% Difference between exact and numerical solutions

diff=u-ue;

• Finally, these numerical results are displayed:

%
% Display the numerical and exact solutions, and
% their difference

fprintf('%10.2f %10.5f %10.5f %10.5f \n',
t,u,ue(1),diff);

Function derv for Equation 1.3 is listed below in Program 2.1.7. The output
from this code is listed below:

euler2a integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88160 1.88160 0.00000
2.00 2.37421 2.37421 0.00000
3.00 2.58627 2.58626 0.00001
4.00 2.66895 2.66895 0.00001
5.00 2.70004 2.70003 0.00001

We note that the integrator euler2a computed a solution accurate to about
0.00001 using nsteps = 100 steps or an integration step of h = 1/100 within
each output interval (corresponding to nout = 6 or t = 0, 1, . . . , 5). Note that
in this case the error tolerances set in intpar, i.e., abserr = 1.0e–05, relerr = 1.0e–
05 were not used since a fixed step integration is performed in euler2a .

If the variable step modified Euler method of euler2b is used (int = 2 set in
intpar), the following output is produced:
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euler2b integrator
t u1 u1e u1-u1e

0.00 1.00000 1.00000 0.00000
1.00 1.88159 1.88160 -0.00001
2.00 2.37421 2.37421 0.00000
3.00 2.58626 2.58626 0.00000
4.00 2.66895 2.66895 0.00000
5.00 2.70003 2.70003 0.00001

Note that the error criteria are satisfied by the variable step modified Euler
integrator.

Similar results can be produced by using int = 3, 4, 5, 6 in intpar. For ex-
ample, with int = 6, the following output from rkf45b results:

rkf45b integrator

t u1 u1e u1-u1e
0.00 1.00000 1.00000 0.00000
1.00 1.88159 1.88160 0.00000
2.00 2.37421 2.37421 0.00000
3.00 2.58626 2.58626 -0.00001
4.00 2.66894 2.66895 -0.00001
5.00 2.70002 2.70003 -0.00001

Again, the error tolerances specified in intpar are satisfied.
We now consider the coding in each of the six integrators. euler2a is listed

below

function [u]=euler2a(neqn,t0,tf,u0,nsteps)
%
% Function euler2a computes an ODE solution by a fixed step
% modified Euler method for a series of points along the
% solution by repeatedly calling function sseuler for a
% single modified Euler step.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
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% nsteps number of modified Euler steps
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Integration step

h=(tf-t0)/nsteps;
%
% nsteps modified Euler steps

for i=1:nsteps
%
% Modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);
%
% Reset base point values for next modified Euler step

u0=u;
t0=t;

%
% Next modified Euler step

end
%
% End of euler2a

Program 2.1.5
Integrator euler2a

We can note the following points about euler2a

• The integration step, h, is set using parameters t0, tf, nsteps set in intpar:

%
% Integration step

h=(tf-t0)/nsteps;

• nsteps modified Euler steps of length h are taken within the for loop by
calling function sseuler (single step modified Euler):

%
% nsteps modified Euler steps

for i=1:nsteps
%
% Modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);

• The solution from sseuler becomes the initial point for the next modified
Euler step:
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%
% Reset base point values for next modified Euler step

u0=u;
t0=t;

Again, note the use of the MATLAB feature for the arrays u, u0 (no
subscripting is required).

• The for loop is then terminated, and after nsteps = 100 passes, the modi-
fied Euler integration over the interval t0 ≤ t ≤ t f is complete. A return
to the main program ode1x1 of Program 2.1.1 then initiates the next in-
terval in the for loop for j = 1 : nout.

%
% Next modified Euler step

end
%
% nsteps modified Euler steps completed

Function sseuler is an implementation of the modified Euler method dis-
cussed in Chapter 1.

function [t,u,e] = sseuler(neqn,t0,u0,h)
%
% Function sseuler computes an ODE solution by the modified
% Euler method for one step along the solution (by calls to
% derv to define the ODE derivative vector). It also
% estimates the truncation error of the solution, and
% applies this estimate as a correction to the solution
% vector.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% u0 initial condition vector of length neqn
%
% h integration step
%
% t independent variable
%
% u ODE solution vector of length neqn after
% one modified Euler step
%
% e estimate of truncation error of the solu-
% tion vector
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%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);
%
% First order (Euler) step

u=u0+ut0*h;
t=t0+h;

%
% Derivative at advance point

[ut]=derv(neqn,t,u);
%
% Truncation error estimate

e=(ut-ut0)*h/2.0;
%
% Second order (modified Euler) solution vector

u=u+e;
%
% End of sseuler

Program 2.1.6
Integrator sseuler for a single modified Euler step

We can note the following points about sseuler:

• The derivative vector at the base point is computed by a call to function
derv:

%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);

derv, which sets the RHS of Equation 1.3, is listed below:

function [ut]=derv(neqn,t,u)
%
% Function derv computes the derivative vector
% of the 1 x 1 ODE problem
%
% Problem parameters

alpha=1.0;
lambda=1.0;

%
% Derivative vector

ut(1)=lambda*exp(-alpha*t)*u(1);
%
% End of derv

Program 2.1.7
Function derv for the RHS of Equation 1.3
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• Once the derivative at the base point is returned from derv, it is used in
a Euler step:

%
% First order (Euler) step

u=u0+ut0*h;
t=t0+h;

This code is just an implementation of Equation 1.26a, where, again,
we have used the array features of MATLAB in working with u, u0, ut0
(which are all one-element arrays or vectors since we are considering a
1x1 ODE system).

• After the solution is computed at the advanced point, the derivative
vector is computed at the advanced point by a second call to derv:

%
% Derivative at advance point

[ut]=derv(neqn,t,u);

Note that the second-order modified Euler method requires two deriva-
tives evaluations (calls to derv). In general, higher-order integration al-
gorithms require additional derivative evaluations (this is the compu-
tational “price” that is paid for the improved accuracy of higher-order
algorithms); also the order of the method, for example, second order for
the modified Euler method, and the number of derivative evaluations,
in this case two calls to derv do not necessarily have to be the same num-
ber; generally, the number of derivative evaluations will be equal to or
greater than the order of the algorithm.

• The derivative vectors at the base point and the advanced point are then
used to estimate the integration (truncation) error according to Equation
1.26b:

%
% Truncation error estimate

e=(ut-ut0)*h/2.0;

This error can be used in a variable step method to determine if the
integration error is within the specified error tolerance; in the present
case of euler2a , the estimated error is not used for this purpose since
euler2a implements a fixed step modified Euler method with h set at the
value discussed previously (and passed to sseuler through an argument).

• Finally, the estimated error is used to correct the first-order Euler solu-
tion to produce the second-order modified Euler solution according to
Equation 1.26c:

%
% Second order (modified Euler) solution vector

u=u+e;
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To complete the discussion of this 1x1 problem, fprint is called by euler2a
as discussed previously to display the solution at the initial point t = t0
and at subsequent output points (at intervals of t f = 1.0 as set in ode1x1 or
t = 0, 1, 2, . . . , 5).

We have observed by taking nout = 100 fixed Euler steps, the numerical
solution agreed with the analytical solution to an accuracy equal to the error
tolerance. This agreement happened, however, by taking nout large enough
to achieve the required accuracy. Generally, for ODE problems for which
we do not have an analytical solution (usually the case—if we knew the
analytical solution, we would not have to compute a numerical solution),
we would like the ODE integration algorithm to set the step size h to pro-
duce a numerical solution that meets the specified error tolerance. While this
may seem impossible (it suggests we know the error, and therefore must
have an analytical solution), as we discussed in Chapter 1, we can in fact
implement a variable step algorithm that automatically adjusts the integra-
tion step to (one hopes) meet the error tolerance. The details for the mod-
ified Euler method are discussed in the five-step algorithm discussed after
Equation 1.26c. We now consider the code for implementing this algorithm
in euler2b:

function [u]=euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr)
%
% Function euler2b computes an ODE solution by a variable
% step modified Euler method for a series of points along
% the solution by repeatedly calling function sseuler for
% a single modified Euler step. The truncation error is
% estimated along the solution to adjust the integration
% step according to a specified error tolerance.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps maximum number of modified Euler steps
%
% abserr absolute error tolerance
%
% relerr relative error tolerance
%
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% u ODE solution vector of length eqn after
% nsteps steps
%
% Initial integration step

h=(tf-t0)/8.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
%
% Start integration

t=t0;
%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set
% the step to the remaining distance to the final
% value

if t+h > tf h=tf-t; end
%
% Single modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;
%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error violation
% and repeat integration from the base point

h=h/2.0; nfin1=0; break;
end

end
%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end
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%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;
%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/4.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
% Continue while

end
%
% End of euler2b

Program 2.1.8
Integrator euler2b

euler2b shares several features with euler2a . However, it also has additional
coding to implement variable stepping in the modified Euler method. We
consider now the details of this additional coding:

• The initial integration step, h, is now set (arbitrarily) to 1
8 of the total

output interval tf − t0. Note that this initial integration interval is larger
than the constant value set in euler2a (h = (tf − t0)/nout, nout = 100)
because we anticipate that euler2b will generally reduce h only when
the error tolerance has been exceeded; in other words, there will be a
variable value of h, and we anticipate its value will not be reduced to
h = (tf − t0)/nout, nout = 100 in order to meet the error tolerance.

%
% Initial integration step

h=(tf-t0)/8.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
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%
% Start integration

t=t0;

However, since euler2b is a library integrator that may be applied to
a spectrum of problems with different characteristics, we should also
provide a safeguard against having h reduced to excessively small values
as it is adjusted in an attempt to satisfy the error tolerance. Therefore, we
also define a minimum allowable integration step, hmin, which is given
the same value as in euler2a ; this value is arbitrarily selected, and some
other value could be used, especially if h is reduced to hmin frequently,
in which case a smaller value of hmin would probably be used. Then
the independent variable is set to the initial value, t = t0, to start the
integration.

• The numerical integration continues until the independent variable t
reaches the final value, tf. This advancement of the solution is controlled
by the while statement:

%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set
% the step to the remaining distance to the final
% value

if t+h > tf h=tf-t; end

Also, if the remaining distance for t to reach tf is less than the current
step h, the step is reduced to tf − t. This ensures that the final step taken
by euler2b will be exactly to the next output point.

• euler2b then takes a modified Euler step as discussed previously by a call
to sseuler:

%
% Single modified Euler step

[t,u,e]=sseuler(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;

Since this step might take the solution to the final value t = tf, a flag is
set indicating that the solution may be complete, nfin1 = 1.

• The estimated error e returned by sseuler is then used to test if any of the
dependent variables violated the error criterion:
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%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error
% violation and repeat integration from the
% base point

h=h/2.0; nfin1=0; break;
end

end

Note in the error test that both the absolute and relative error tolerances,
abserr and relerr, are used. If an error violation is detected, the integration
step is halved and the flag indicating the end of the integration nfin1 is
set to zero (the integration is not complete since it will be repeated with
one half the previous integration step to improve the accuracy of the
solution). Note that if any of the dependent variables violate the error
criterion, the integration step is halved, i.e., the for loop is exited through
the break. Conversely, if all of the dependent variables meet the error
criterion, nfin1 remains at 1 indicating that so far, so good.

• If the preceding integration step reduction (halving) has reduced the in-
tegration step to or below the minimum allowable value, the integration
step is set to the mimimum allowable value, and the integration then
proceeds using this minimum value.

%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end

The idea here is that the integrator has done the best it can (reduced h to
hmin), and it therefore might as well continue. Of course, at this point an
error message could be printed signaling that another solution should
probably be computed with a smaller value for hmin for comparison
with the current solution. This point illustrates an important advantage
of having access to the source code for the integrator; additional coding
and features can be added such as an error message warning the user of
a possible error violation.

• If at this point nfin1 = 1, the integration can proceed by resetting the
base solution values equal to the current solution values:
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%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;

• Also, before the next step is taken along the solution, there is the possi-
bility that the integration step could be increased. Thus, a test is made to
determine if the estimated error for each dependent variable is less than
1
4 of the error tolerance. If so, the integration step is doubled before the
next step along the solution is taken:

%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/4.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
% Continue while

end

Note that if all of the dependent variables have estimated errors less than
1
4 of the error tolerance, the integration step is doubled. In other words,
if any of the dependent variables have an estimated error exceeding
1
4 of the error tolerance, the integration step is not doubled. Also, the
factor of 1

4 comes from the second-order characteristic of the modified
Euler method, i.e., if error = ch2, then doubling h will increase error by a
factor of four (which would bring the error just up to the specified error
tolerance if the estimated error is 1

4 of the error tolerance). If nfin1 = 1, the
integration step is doubled, and the integration proceeds; if nfin1 = 0,
the integration proceeds without doubling of the step. In either case,
stepping continues until t reaches t f according to the original while.

As noted previously, changes and new features can be added to this basic
integrator. These could include:
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• Selection of an initial integration step according to an established algo-
rithm

• Change in the minimum allowable step, hmin
• Application of absolute and relative error tolerances to each dependent

variable (so that these error tolerances can be specified for each depen-
dent variable)

• A more sophisticated algorithm for increasing the integration step (rather
than just doubling)

All of these features have been used in various library integrators. However,
we have used only basic methods to facilitate understanding the variable
stepping in euler2b. As we observed in the numerical output for the 1x1 ODE
problem, these methods worked quite well (the error tolerance was main-
tained), and we have found that generally this is the case.

Also, we see that it is possible to adjust the integration step automatically
to achieve a prescribed accuracy in the numerical solution without knowing
the analytical (exact) solution. This is possible because we are using an error
estimate to adjust the integration step rather than the exact error (which gener-
ally is unknown). Later we study in a little more detail how h varies for this
1x1 ODE system.

This procedure of using an error estimate can be applied to an nxn ODE
system. Furthermore, it can be used with a higher-order ODE integrator. To
illustrate how this can be done, we now consider the following:

1. A fixed step classical fourth-order Runge Kutta (RK) integrator, rkc4a ,
as defined by Equations 1.50 and 1.51.

2. A variable step classical fourth-order RK integrator, rkc4b, as defined
by Equations 1.50 and 1.51.

rkc4a and rkc4b closely parallel euler2a and euler2b, respectively. Therefore,
in the following discussion, we emphasize only the small differences (gener-
ally additional code to increase the order from second to fourth).

rkc4a (called by setting int = 3 in function intpar of Program 2.1.3) is listed
first:

function [u]=rkc4a(neqn,t0,tf,u0,nsteps)
%
% Function rkc4a computes an ODE solution by a fixed step
% classical fourth order RK method for a series of points
% along the solution by repeatedly calling function ssrkc4
% for a single classical fourth order RK step.
%
% Argument list
%
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% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps number of rkc4 steps
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Integration step

h=(tf-t0)/nsteps;
%
% nsteps rkc4 steps

for i=1:nsteps
%
% rkc4 step

[t,u,e]=ssrkc4(neqn,t0,u0,h);
%
% Reset base point values for next rkc4 step

u0=u;
t0=t;

%
% Next rkc4 step

end
%
% End of rkc4a

Program 2.1.9
Integrator rkc4a

We see that rkc4a is essentially identical to euler2a ; the only difference is
a call to ssrkc4 (for a single step classical fourth-order RK step) in place of
sseuler.

ssrkc4 is listed below:

function [t,u,e] = ssrkc4(neqn,t0,u0,h)
%
% Function ssrkc4 computes an ODE solution by the classical
% fourth order RK method for one step along the solution
% (by calls to derv to define the ODE derivative vector).
% It also estimates the truncation error of the solution,
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% and applies this estimate as a correction to the solution
% vector.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% u0 initial condition vector of length neqn
%
% h integration step
%
% t independent variable
%
% u ODE solution vector of length neqn after
% one rkc4 step
%
% e estimate of truncation error of the solu-
% tion vector
%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);
%
% k1, advance of dependent variable vector and
% independent variable for calculation of k2

k1=h*ut0;
u=u0+0.5*k1;
t=t0+0.5*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k2, advance of dependent variable vector and
% independent variable for calculation of k3

k2=h*ut;
u=u0+0.5*k2;
t=t0+0.5*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k3, advance of dependent variable vector and
% independent variable for calculation of k4
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k3=h*ut;
u=u0+k3;
t=t0+h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k4

k4=h*ut;
%
% Second order step

sum2=u0+k2;
%
% Fourth order step

sum4=u0+(1.0/6.0)*(k1+2.0*k2+2.0*k3+k4);
t=t0+h;

%
% Truncation error estimate

e=sum4-sum2;
%
% Fourth order solution vector (from (2,4) RK pair);
% two ways to the same result are listed
% u=sum2+e;

u=sum4;
%
% End of ssrkc4

Program 2.1.10
Integrator ssrkc4 for a classical fourth-order RK step

ssrkc4 is similar in structure to sseuler; the only essential difference is the
coding of the classical fourth-order RK algorithm, defined by Equations 1.50
and 1.51, in place of the modified Euler method of Equations 1.26.

To explain this difference a little further,

• The integration starts with an evaluation of the derivative vector at the
base point (as in euler2a ):

%
% Derivative vector at initial (base) point

[ut0]=derv(neqn,t0,u0);

• From the derivative vector at the base point, the first RK “constant,” k1,
can be calculated according to Equation 1.50a:

%
% k1, advance of dependent variable vector and
% independent variable for calculation of k2
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k1=h*ut0;
u=u0+0.5*k1;
t=t0+0.5*h;

Note that at the same time, the dependent variable vector, u, is advanced
in preparation for the calculation of k2. Note also that the RK constants
are vectors with a dimension equal to the number of first-order ODEs,
one in this case (for the 1x1 ODE problem).

• The derivative vector is then computed at the new value of u by a call to
derv, and k2 is calculated according to Equation 1.50b; u is then advanced
in preparation for the calculation of k3:

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k2, advance of dependent variable vector and
% independent variable for calculation of k3

k2=h*ut;
u=u0+0.5*k2;
t=t0+0.5*h;

• The derivative vector is again computed at the new value of u by a call to
derv, and k3 is calculated according to Equation 1.50c; u is then advanced
in preparation for the calculation of k4:

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k3, advance of dependent variable vector and
% independent variable for calculation of k4

k3=h*ut;
u=u0+k3;
t=t0+h;

• The derivative vector is again updated and k4 is calculated according to
Equation 1.50d:

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k4

k4=h*ut;

• The second- and fourth-order solutions are computed according to
Equations 1.40 and 1.50e, respectively:
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%
% Second order step

sum2=u0+k2;
%
% Fourth order step

sum4=u0+(1.0/6.0)*(k1+2.0*k2+2.0*k3+k4);
t=t0+h;

• The integration error is estimated as the difference between the second-
and fourth-order numerical solution, according to Equation 1.51:

%
% Truncation error estimate

e=sum4-sum2;

• The solution vector u is then returned as the fourth-order result:

%
% Fourth order solution vector (from (2,4) RK pair);
% two ways to the same result are listed
% u=sum2+e;

u=sum4;

The output from rkc4a (which calls ssrkc4) is not listed here to conserve some
space. However, it is similar to the output from euler2a , and can easily be
produced by setting int = 3 in function (intpar).

rkc4b, the variable step version of the classical fourth-order RK method of
Equations 1.50 and 1.51, is listed below:

function [u]=rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr)
%
% Function rkc4b computes an ODE solution by a variable
% step classical fourth order RK method for a series of
% points along the solution by repeatedly calling function
% ssrkc4 for a single classical fourth order RK step. The
% truncation error is estimated along the solution to
% adjust the integration step according to a specified
% error tolerance.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
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% u0 initial condition vector of length neqn
%
% nsteps maximum number of rkc4 steps
%
% abserr absolute error tolerance
%
% relerr relative error tolerance
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Initial integration step

h=(tf-t0)/2.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
%
% Start integration

t=t0;
%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set the
% step to the remaining distance to the final value

if t+h > tf h=tf-t; end
%
% Single rkc4 step

[t,u,e]=ssrkc4(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;
%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error violation
% and repeat integration from the base point

h=h/2.0; nfin1=0; break;
end
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end
%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end
%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;
%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/16.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
% Continue while

end
%
% End of rkc4b

Program 2.1.11
Integrator rkc4b

rkc4b is basically identical to euler2b. The only essential difference is the call
to ssrkc4 in place of sseuler. Also, the test for integration step doubling is

if abs(e(i)) > (abs(u(i))*relerr+abserr)/16.0

i.e., there is a division by 16 rather than by 4 as in sseuler since the classical
RK method is fourth order (rather than second order).

To complete the picture, we include listings of the following:

• rkf45a (analogous to euler2a and rkc4a ) as Program 2.1.12
• rkf45b (analogous to euler2b and rkc4b) as Program 2.1.13
• ssrkf45 (analogous to sseuler and ssrkc4) as Program 2.1.14
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function [u]=rkf45a(neqn,t0,tf,u0,nsteps)
%
% Function rkf45a computes an ODE solution by the fixed
% step RK Fehlberg 45 method for a series of points along
% the solution by repeatedly calling function ssrkf45 for
% a single RK Fehlberg 45 step.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps number of rkf45 steps
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Integration step

h=(tf-t0)/nsteps;
%
% nsteps rkf45 steps

for i=1:nsteps
%
% rkf45 step

[t,u,e]=ssrkf45(neqn,t0,u0,h);
%
% Reset base point values for next rkc4 step

u0=u;
t0=t;

%
% Next rkf45 step

end
%
% End of rkf45a

Program 2.1.12
Integrator rkf45a

rkf45a is called by setting int = 5 in function intpar. The output is essentially
the same as from euler2a and rkc4a , and therefore is not listed here.
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function [u]=rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr)
%
% Function rkf45b computes an ODE solution by the variable
% step RK Fehlberg 45 method for a series of points along
% the solution by repeatedly calling function ssrkf45 for
% a single RK Fehlberg 45 step. The truncation error is
% estimated along the solution to adjust the integration
% step according to a specified error tolerance.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% tf final value of independent variable
%
% u0 initial condition vector of length neqn
%
% nsteps maximum number of rkf45 steps
%
% abserr absolute error tolerance
%
% relerr relative error tolerance
%
% u ODE solution vector of length neqn after
% nsteps steps
%
% Initial integration step

h=(tf-t0)/2.0;
%
% Minimum allowable step

hmin=(tf-t0)/nsteps;
%
% Start integration

t=t0;
%
% While independent variable is less than the final
% value, continue the integration

while t <= tf*0.999
%
% If the next step along the solution will go past
% the final value of the independent variable, set the
% step to the remaining distance to the final value

if t+h > tf h=tf-t; end
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%
% Single rkf45 step

[t,u,e]=ssrkf45(neqn,t0,u0,h);
%
% Flag for the end of the integration

nfin1=1;

%
% Check if any of the ODEs have violated the error
% criteria

for i=1:neqn
if abs(e(i)) > abs(u(i))*relerr+abserr

%
% Error violation, so integration is not complete.
% Reduce integration step because of error violation
% and repeat integration from the base point

h=h/2.0; nfin1=0; break;
end

end
%
% If the current step is less than the minimum
% allowable step, set the step to the minimum
% allowable value and continue integration from
% new base point

if h < hmin h=hmin; nfin1=1; end
%
% If there is no error violation, continue the
% integration from new base point

if nfin1 == 1 u0=u; t0=t;
%
% Test if integration step can be increased

for i=1:neqn
if abs(e(i)) > (abs(u(i))*relerr+abserr)/32.0

%
% Integration step cannot be increased

nfin1=0; break;
end

end
%
% Increase integration step

if nfin1 == 1 h=h*2.0; end
%
% Continue for no error violation (nfin1=1)

end
%
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% Continue while
end

%
% End of rkf45b

Program 2.1.13
Integrator rkf45b

rkf45b is basically identical to rkc4b. The only essential difference is the call
to ssrkf45 in place of ssrkc4. Also, the test for integration step doubling is

if abs(e(i)) > (abs(u(i))*relerr+abserr)/32.0

i.e., there is a division by 32 rather than by 16 as in ssrkc4 since the RKF45
method is fifth order (rather than fourth order).

rkf45b is called by setting int = 6 in function intpar. The output (listed
previously) is essentially the same as from euler2b and rkc4b.

function [t,u,e] = ssrkf45(neqn,t0,u0,h)
%
% Function ssrkf45 computes an ODE solution by the RK
% Fehlberg 45 method for one step along the solution (by
% calls to derv to define the ODE derivative vector). It
% also estimates the truncation error of the solution,
% and applies this estimate as a correction to the solution
% vector.
%
% Argument list
%
% neqn number of first order ODEs
%
% t0 initial value of independent variable
%
% u0 initial condition vector of length neqn
%
% h integration step
%
% t independent variable
%
% u ODE solution vector of length neqn after
% one rkf45 step
%
% e estimate of truncation error of the solu-
% tion vector
%
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% Derivative vector at initial (base) point
[ut0]=derv(neqn,t0,u0);

%
% k1, advance of dependent variable vector and
% independent variable for calculation of k2

k1=h*ut0;
u=u0+0.25*k1;
t=t0+0.25*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k2, advance of dependent variable vector and
% independent variable for calculation of k3

k2=h*ut;
u=u0+(3.0/32.0)*k1...

+(9.0/32.0)*k2;
t=t0+(3.0/8.0)*h;

%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k3, advance of dependent variable vector and
% independent variable for calculation of k4

k3=h*ut;
u=u0+(1932.0/2197.0)*k1...

-(7200.0/2197.0)*k2...
+(7296.0/2197.0)*k3;

t=t0+(12.00/13.0)*h;
%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k4, advance of dependent variable vector and
% independent variable for calculation of k5

k4=h*ut;
u=u0+( 439.0/ 216.0)*k1...

-( 8.0 )*k2...
+(3680.0/ 513.0)*k3...
-( 845.0/4104.0)*k4;

t=t0+h;
%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
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% k5, advance of dependent variable vector and
% independent variable for calculation of k6

k5=h*ut;
u=u0-( 8.0/ 27.0)*k1...

+( 2.0 )*k2...
-(3544.0/2565.0)*k3...
+(1859.0/4104.0)*k4...
-( 11.0/ 40.0)*k5;

t=t0+0.5*h;
%
% Derivative vector at new u, t

[ut]=derv(neqn,t,u);
%
% k6

k6=h*ut;
%
% Fourth order step

sum4=u0+( 25.0/ 216.0)*k1...
+( 1408.0/2565.0)*k3...
+( 2197.0/4104.0)*k4...
-( 1.0/ 5.0)*k5;

%
% Fifth order step

sum5=u0+( 16.0/ 135.0)*k1...
+( 6656.0/12825.0)*k3...
+(28561.0/56430.0)*k4...
-( 9.0/ 50.0)*k5...
+( 2.0/ 55.0)*k6;

t=t0+h;
%
% Truncation error estimate

e=sum5-sum4;
%
% Fifth order solution vector (from (4,5) RK pair);
% two ways to the same result are listed
% u=sum4+e;

u=sum5;
%
% End of ssrkf45

Program 2.1.14
Integrator ssrkf45 for a RKF45 step

The only essential difference for ssrkf45 is the coding of the ODE integration
method, i.e.,
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• sseuler2—single step modified Euler method ((1, 2) pair)
• ssrk4c—single step classical fourth-order RK method ((2, 4) pair)
• ssrkf45—single step RKF 45 method ((4, 5) pair)

Another possibility would be to write a function analogous to ssrkf45 using
the (2, 3) pair discussed previously. The only requirement would be to use the
(2, 3) formulas in place of those for the (4, 5) pair; all the other coding in the
preceding functions would remain essentially the same. The writing of a (2, 3)

integrator is therefore left as an excerise for the reader.
We also have observed in the previous routines an organizing principle that

we will use consistently throughout the remainder of this book:

• A set of library routines, which are general purpose and should therefore
not be changed from one ODE application to the next. Specifically, the
following routines can be applied generally to an ODE problem and
should therefore not be modified:

Routine Names Purpose

ode1x1 Main program
euler2a, euler2b, sseuler (1,2) RK pair

rkc4a, rkc4b, ssrkc4 (2,4) RK pair
rkf45a, rkf45b, ssrkf45 (4,5) RK pair

• A set of routines that apply specifically to the ODE problem at hand:

Routine Names Purpose

inital Set initial conditions
derv Compute ODE RHS vector

fprint Display ODE solution

While these routines pertain to a specific ODE application, in this case the
1x1 ODE problem, they can serve as templates for other ODE applications.
In other words, they can be easily modified for the solution of other
ODEs. For example, they could be modified from the 1x1 problem of
Equations 1.3 and 1.4 to the 2x2 problem of Equations 1.6, 1.16, and 1.17.

• One routine, intpar falls somewhere between the two preceding sets. It is
general purpose in the sense that it sets the parameters that control the
operation of the general-purpose ODE integration routines; e.g., it sets
the error tolerances. On the other hand, the specific values of the param-
eters depend on the properties of the particular ODE problem; e.g., the
number of integration steps, nsteps, may have to be adjusted. Thus, some
trial and error generally will be required when coding intpar for a new
ODE application. This is particularly the case with the error tolerances as
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discussed in Chapter 1; in fact, probably the single most common cause
of library integrator failures is the specification of inappropriate error
tolerances.

To summarize this organizing principle, the general-purpose (library) rou-
tines and the problem-specific routines should be separated as much as possible
in the development of new ODE applications. This separation cannot be achieved
completely because of the need to tune the integrator parameters, i.e., in intpar.

This basically completes the discussion of the ODE integrators in MATLAB.
In a subsequent section, we revisit some of the preceding routines to which
some output statements are added to indicate what is occurring within them,
particularly with regard to error monitoring and step size adjustment (in
euler2b, rkc4b, and rkf45b). The purpose of this additional output is to (a)
observe if the integrators operate internally as we would expect, and (b)
present a method for debugging when approaching a new ODE problem.
We now proceed to the programming of the preceding integrators in other
languages.

2.2 Programming in C

Because the operation of the (1, 2), (2, 4), and (4, 5) integrators has been dis-
cussed in detail in Section 2.1, we now proceed with the analogous program-
ming in C, but without the same detailed explanation. In other words, we
consider the listing of the routines to be essentially self-explanatory (also, we
will not consider the details of the differences in syntax between MATLAB
and C). Our expectation is that the C code will be largely self-explanatory
when compared with the preceding MATLAB code. In fact, we have tried
to make the two sets of routines closely resemble each other to facilitate the
understanding of one set in terms of the other.

Also, we have used alphabetical ordering of the languages in the following
discussion to demonstrate that we do not endorse one language over another.
The one exception is the preceding use of MATLAB, which we selected first
because of its simplicity in handling vectors (without subscripting). How-
ever, this does not mean we favor MATLAB, and in fact, we also have some
reservations about this and other “automatic features” possibly leading to un-
intended errors and consequences. In other words, subscripting within do and
for loops provides an unambiguous indication of how vectors (and matrices)
are coded and manipulated with very little additional coding (efficiency may
also be a consideration, especially with MATLAB, which tends to be more
efficient without subscripting).

Thus, we feel that all of the languages are about comparable in utility for
the numerical integration of ODE/PDE systems. A main concern is therefore



144 Ordinary and Partial Differential Equation Routines

to provide code that follows a common theme and format to demonstrate
that all of the languages are about equal in terms of their utility in studying
differential systems.

To start, we list a main program analogous to Program 2.1.1:

/*

Numerical solution to the 1 x 1 ODE system by six
integrators

*/

/* Include headers */
#include <stdio.h>
#include <math.h>
#include "ode1x1.h"
#include "euler.h"
#include "rk.h"

/* Main program */
void main()
{

/* Type variables */
double u0[SIZE],u[SIZE];
double tp;
int i, j, ncase;

/* Open a file for output */
if((fid=fopen("ode1x1c.out","w+"))==NULL)

{ printf("\nError opening output file\n"); }

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

{
/* ODE integration parameters */
intpar();

/* Initial condition */
inital(u0,t0);

/* Output interval */
tp=tf-t0;

/* Step through nout grid points */
for(j=1;j<=nout;j++)
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{
/* Print current solution */
fprint(ncase,t0,u0);

/* Select ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler integrator */
case 1:
euler2a(n,t0,tf,u,u0,nsteps);
break;

/* Variable step modified Euler integrator */
case 2:
euler2b(n,t0,tf,u,u0,nsteps,abserr,relerr);
break;

/* Fixed step classical fourth order
RK integrator */
case 3:
rkc4a(n,t0,tf,u,u0,nsteps);
break;

/* Variable step classical fourth order
RK integrator */
case 4:
rkc4b(n,t0,tf,u,u0,nsteps,abserr,relerr);
break;

/* Fixed step RK Fehlberg (RKF45)
integrator */
case 5:
rkf45a(n,t0,tf,u,u0,nsteps);
break;

/* Variable step RK Fehlberg (RKF45)
integrator */
case 6:
rkf45b(n,t0,tf,u,u0,nsteps,abserr,relerr);
break;

}

/* Advance solution */
t0=tf;
tf=tf+tp;
for(i=1;i<=n;i++)
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{
u0[i]=u[i];

}

/* Next output */
}

/* Next integrator */
}

/* Complete solution computed. Close the output file */
fclose(fid);

/* End of main */
}

Program 2.2.1
C main program for the numerical integration of Equation 1.3 subject to initial
condition Equation 1.4

We can note the following points about this program:

• Comments in C are generally enclosed within the delimiters /* */ (which
seems safe since the arithmetic operators * and / generally will not be
adjacent when writing C code).

• The main program starts with the declaration of some header files:

/* Include headers */
#include <stdio.h>
#include <math.h>
#include "ode1x1.h"
#include "euler.h"
#include "rk.h"

In addition to the standard header files for C (stdio.h and math.h), we have
included three header files, ode1x1.h, euler.h and rk.h for the numerical
integration of the 1x1 ODE (Equation 1.3) using the (1, 2), (2, 4), and
(4, 5) pairs.

• Instead of executing each of the six ODE integrators individually by
changing int through the values int = 1, 2, . . . , 6, we call all six integra-
tors in a loop:

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

Otherwise, the coding in Program 2.2.1 closely parallels that in Program 2.1.1.
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Header file ode1x1.h is listed below:

/*

Definition of functions intpar, inital, derv, fprint
for the 1 x 1 ODE system

*/

/* Include headers */
#include <stdio.h>
#include <math.h>

/* Maximum number of ODEs */
#define SIZE 500

/* Type variables as extern (global) */
extern int n, nout, nsteps;
extern double t0, tf, abserr, relerr;
extern FILE *fid;

/* Integration parameters */
void intpar();

/* Initial condition */
void inital(double u0[], double t);

/* Derivative vector */
void derv(double ut[], double t, double u[]);

/* Output */
void fprint(int ncase, double t, double u[]);

Program 2.2.2
Header file ode1x1.h included in Program 2.2.1

All of the routines defined in ode1x1.h have already been discussed in detail
in Section 2.1. We can note the following details:

• The maximum number of ODES has been set (arbitrarily) at 500:

/* Maximum number of ODEs */
#define SIZE 500

This absolute sizing can be increased to any desired value (although it
is more than adequate since we are integrating one ODE).
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• Several global variables are defined that can be shared between routines:

/* Type variables as extern (global) */
extern int neqn, nout, nsteps;
extern double t0, tf, abserr, relerr;
extern FILE *fid;

A file ID (pointer) is also declared as a global variable for writing an
external output file.

• Routines intpar, inital, derv, and fprint are declared. They have the same
function as those of the same name in Section 2.1. All these routines are
listed subsequently.

Otherwise, the coding in Programs 2.2.1 and 2.2.2 follows directly from their
counterparts in Section 2.1.

intpar is listed below:

#include "ode1x1.h"

/* Type global variables */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

/* Define file ID */
FILE *fid;

void intpar()

/* Function intpar sets the parameters to control the
integration of the 1 x 1 ODE system */
{

/* Number of ODEs */
neqn=1;

/* Number of output points */
nout=6;

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of independent variable */
t0=0.0;
tf=1.0;
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/* Error tolerances */
abserr=pow(10,-5);
relerr=pow(10,-5);

/* End of intpar */
}

Program 2.2.3
Routine intpar called in Program 2.2.1 to set the integration parameters

intpar is essentially identical to its counterpart in Program 2.1.3.
inital, derv and fprint are listed below:

void inital(double u0[],double t0)

/* Function inital sets the initial condition vector for
the 1 x 1 ODE problem */
{

/* Initial condition */
u0[1]=1.0;

/* End of inital */
}

void derv(double ut[], double t, double u[])

/* Function derv computes the derivative vector of the
1 x 1 ODE problem */
{

/* Type variables */
double alpha, lambda;

/* Problem parameters */
alpha=1.0;
lambda=1.0;

/* Derivative vector */
ut[1]=lambda*exp(-alpha*t)*u[1];

/* End of derv */
}

void fprint(int ncase, double t, double u[])
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/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem */
{

/* Type variables */
double ue[2], diff[2];
double u0, alpha, lambda;

/* Problem parameters */
u0=1.0;
alpha=1.0;
lambda=1.0;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
fprintf(fid,"\n\n int = %3d\n",ncase);

/* Label for ODE integrator */
switch(ncase)

{
case 1: /* Fixed step modified Euler */
fprintf(fid,"\n euler2a integrator\n");
break;

case 2: /* Variable step modified Euler */
fprintf(fid,"\n euler2b integrator\n");
break;

case 3: /* Fixed step classical fourth order RK */
fprintf(fid,"\n rkc4a integrator\n");
break;

case 4: /* Variable step classical fourth order
RK */
fprintf(fid,"\n rkc4b integrator\n");
break;

case 5: /* Fixed step RK Fehlberg 45 */
fprintf(fid,"\n rkf45a integrator\n");
break;

case 6: /* Variable step RK Fehlberg 45 */
fprintf(fid,"\n rkf45b integrator\n");
break;

}
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/* Heading */
fprintf(fid,"\n t u1(num) u1(ex) diff1\n\n");

/* End of t = 0 heading */
}

/* Analytical solution vector */
ue[1]=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));

/* Difference between exact and numerical solution
vectors */
diff[1]=u[1]-ue[1];

/* Display the numerical and exact solutions, and their
difference */

fprintf(fid,"%10.2f %10.5f %10.5f %13.4e\n",
t,u[1],ue[1],diff[1]);

/* End of fprint */
}

Program 2.2.4
inital, derv and fprint called in the solution of Equations 1.3 and 1.4

These routines should be self-explanatory, particularly when compared with
their MATLAB counterparts in Section 2.1.

The output from the six integrators called in Program 2.2.1 is listed below
(written to file ode1x1c.out in fprint):

int = 1

euler2a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 -6.4665e-08
2.00 2.37421 2.37421 3.8793e-06
3.00 2.58627 2.58626 6.0332e-06
4.00 2.66895 2.66895 6.9239e-06
5.00 2.70004 2.70003 7.2649e-06
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int = 2

euler2b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88159 1.88160 -6.2196e-06
2.00 2.37421 2.37421 -3.7783e-06
3.00 2.58626 2.58626 2.9325e-07
4.00 2.66895 2.66895 3.6651e-06
5.00 2.70003 2.70003 6.2494e-06

int = 3

rkc4a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 -2.7188e-11
2.00 2.37421 2.37421 -3.2671e-11
3.00 2.58626 2.58626 -3.4825e-11
4.00 2.66895 2.66895 -3.5646e-11
5.00 2.70003 2.70003 -3.5952e-11

int = 4

rkc4b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 -4.2632e-08
2.00 2.37421 2.37421 6.8773e-08
3.00 2.58626 2.58626 9.3031e-08
4.00 2.66895 2.66895 1.0305e-07
5.00 2.70003 2.70003 1.4624e-07
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int = 5

rkf45a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88160 1.88160 6.6613e-16
2.00 2.37421 2.37421 2.6645e-15
3.00 2.58626 2.58626 1.3323e-15
4.00 2.66895 2.66895 1.3323e-15
5.00 2.70003 2.70003 -1.3323e-15

int = 6

rkf45b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000e+00
1.00 1.88159 1.88160 -3.2870e-06
2.00 2.37421 2.37421 -4.6026e-06
3.00 2.58626 2.58626 -5.0371e-06
4.00 2.66894 2.66895 -5.1682e-06
5.00 2.70002 2.70003 -5.2117e-06

We can note the following details about this output:

• The error tolerances set in intpar

/* Error tolerances */
abserr=pow(10,-5);
relerr=pow(10,-5);

are satisfied by all of the integrators.
• The fixed step integrators, euler2a , rkc4a , and rkf 45a exceed the error

tolerances by orders of magnitude when using 100 integration steps in
each output interval as set in intpar:

/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

In fact, rkc4a and rkf45a provide accuracies that might be considered
excessive. In the case of rkf45a , the errors are of the order of the machine
epsilon (unit roundoff, machine precision) for C.
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We now consider the six integrators by listing and briefly discussing the
source code (again, we are relying on the preceding discussion of the six
integrators in MATLAB to explain most of the details). euler2a is listed first:

/* Include headers */
#include "euler.h"
#include <stdio.h>

double euler2a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps)

/*
Function euler2a computes an ODE solution by the fixed
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for
a single modified Euler step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double e[SIZE];
double h,t;
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps modified Euler steps */
for(i=1;i<=nsteps;i++)

{
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);
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/* Reset base point values for next modified
Euler step */

for(j=1;j<=neqn;j++)
{

u0[j]=u[j];
}
t0=t;

/* End for */
}

return 0;

/* End of euler2a */
}

Program 2.2.5
Integrator euler2a

euler2a closely parallels the MATLAB routine of Program 2.1.5 and therefore
will not be discussed further.

euler2b is listed below:

double euler2b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr)

/*
Function euler2b computes an ODE solution by the variable
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for a
single modified Euler step. The truncation error is
estimated along the solution to adjust the integration
step according to a specified error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps
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u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t;
int i, nfin1;
double e[SIZE];

/* Integration step */
h=(tf-t0)/8.0;

/* Minimum allowable step */
hmin=(tf-t0)/(float)(nsteps);

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while (t <= tf*0.999)

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the
error */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */



Solution of a 1 x 1 ODE System 157

nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h=(float)hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1 )

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/4.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}
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/* End while */
}

return 0;

/* End of euler2b */
}

Program 2.2.6
Integrator euler2b

Again, euler2b closely parallels the MATLAB routine of Program 2.1.8 except
for differences in syntax between MATLAB and C and, therefore, will not be
discussed further.

sseuler is listed below:

double sseuler(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function sseuler computes an ODE solution by the modified
Euler method for one step along the solution (by calls to
derv to define the ODE derivative vector). It also
estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one modified Euler step

e estimate of truncation error of the solution
vector

*/
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{
/* Type variables */
double ut0[SIZE], ut[SIZE];
double t;
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* First order (Euler) step */
for(j=1;j<=neqn;j++)

{
u[j]=u0[j]+ut0[j]*h;

}
t=t0+h;

/* Derivative at advance point */
derv(ut,t,u);

/* Second order (modified Euler) step */
for(j=1;j<=neqn;j++)

{
/* Truncation error estimate */
e[j]=(ut[j]-ut0[j])*h/2.0;

/* Second order (modified Euler) solution vector */
u[j]=u[j]+e[j];

}

return t;

/* End of sseuler */
}

Program 2.2.7
Integrator sseuler for a single modified Euler step

Again, sseuler is a direct analog of the MATLAB routine in Program 2.1.6.
The header file for euler2a , euler2b, and sseuler is as follows:

/*

Routines for the Euler ODE Integration

*/
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#include <math.h>

#define SIZE 500

double euler2a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double euler2b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double sseuler(int neqn, double t0, double u0[], double h,
double u[], double e[]);

Program 2.2.8
Header file euler.h for euler2a , euler2b, and sseuler

rkc4a , rkc4b, and ssrkc4 are listed below without further comment (their
MATLAB counterparts are Programs 2.1.9, 2.1.10, and 2.1.11):

#include "rk.h"

double rkc4a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps)

/*
Function rkc4a computes an ODE solution by the fixed step
classical fourth order RK method for a series of points
along the solution by repeatedly calling function ssrkc4
for a single classical fourth order RK step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkc4 steps

u ODE solution vector of length neqn after
nsteps steps
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*/
{

/* Type variables */
int i, j;
double t, h, e[SIZE];

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkc4 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Reset base point values for next rk4c step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

return 0;

/* End of rkc4a */
}

Program 2.2.9
Integrator rkc4a

double rkc4b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps,double abserr,
double relerr)

/*
Function rkc4b computes an ODE solution by a variable
step classical fourth order RK method for a series of
points along the solution by repeatedly calling function
ssrkc4 for a single classical fourth order RK step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.
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Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkc4 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int nfin1, i;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}
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/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if( fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h = hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)
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{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/16.0))
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkc4b */
}

Program 2.2.10
Integrator rkc4b

double ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function ssrkc4 computes an ODE solution by the classical
fourth order RK method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable
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u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkc4 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[SIZE], ut[SIZE], u4[SIZE];
double t, k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.5*k1[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+0.5*k2[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)
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{
k3[j]=h*ut[j];
u[j]=u0[j]+k3[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; second and fourth order step; error estimate;
error correction */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+k2[j];
u4[j]=u0[j]+(1.0/6.0)*(k1[j]+2.0*k2[j]+2.0*k3[j]

+k4[j]);
e[j]=u4[j]-u[j];
u[j]=u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkc4 */
}

Program 2.2.11
Integrator ssrkc4 for a classical fourth-order RK step

rkf45a , rkf45b, and ssrkf45 are listed below without further comment (their
MATLAB counterparts are Programs 2.1.9, 2.1.10, and 2.1.11):

double rkf45a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps)

/*
Function rkf45a computes an ODE solution by the fixed
step RK Fehlberg 45 RK method for a series of points
along the solution by repeatedly calling function ssrkf45
for a single RK Fehlberg 45 step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable
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tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkf45 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double t, h, e[SIZE];
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkf45 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Reset base point values for next rkf45 step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

return 0;

/* End rkf45a */
}

Program 2.2.12
Integrator rkf45a

double rkf45b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps,double abserr,
double relerr)

/*
Function rkf45b computes an ODE solution by a variable
step classical RK Fehlberg 45 method for a series of
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points along the solution by repeatedly calling function
ssrkf45 for a single RK Fehlberg 45 step. The truncation
error is estimated along the solution to adjust the
integration step according to a specified error
tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkf45 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int i, nfin1;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
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/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for (i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h = hmin;
nfin1=1;

}
break;

}

}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
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for(i=1;i<=neqn;i++)
{

u0[i]=u[i];
}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr+abserr)

/32.0) )
{

/* Integration step cannot be
increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkf45b */
}

Program 2.2.13
Integrator rkf45b

double ssrkf45(int neqn, double t0, double u0[], double h,
double u[], double e[])

/*
Function ssrkf45 computes an ODE solution by the RK
Fehlberg 45 method for one step along the solution (by
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calls to derv to define the ODE derivative vector). It
also estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkf45 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double t, ut0[SIZE], ut[SIZE], u5[SIZE];
double k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE], k5[SIZE],
k6[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.25*k1[j];

}
t=t0+0.25*h;

/* Derivative vector at next RK point */
derv(ut,t,u);
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/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+(3.0/32.0)*k1[j]

+(9.0/32.0)*k2[j];
}
t=t0+(3.0/8.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+(1932.0/2197.0)*k1[j]

-(7200.0/2197.0)*k2[j]
+(7296.0/2197.0)*k3[j];

}
t=t0+(12.00/13.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; stepping for k5 */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+( 439.0/ 216.0)*k1[j]

-( 8.0 )*k2[j]
+(3680.0/ 513.0)*k3[j]
-( 845.0/4104.0)*k4[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k5; stepping for k6 */
for(j=1;j<=neqn;j++)

{
k5[j]=h*ut[j];
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u[j]=u0[j]-( 8.0/ 27.0)*k1[j]
+( 2.0 )*k2[j]
-(3544.0/2565.0)*k3[j]
+(1859.0/4104.0)*k4[j]
-( 11.0/ 40.0)*k5[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k6; fourth and fifth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k6[j]=h*ut[j];
u[j]=u0[j]+( 25.0/ 216.0)*k1[j]

+( 1408.0/2565.0)*k3[j]
+( 2197.0/4104.0)*k4[j]
-( 1.0/ 5.0)*k5[j];

u5[j]=u0[j]+( 16.0/ 135.0)*k1[j]
+( 6656.0/12825.0)*k3[j]
+(28561.0/56430.0)*k4[j]
-( 9.0/ 50.0)*k5[j]
+( 2.0/ 55.0)*k6[j];

e[j]=u5[j]-u[j];
u[j]= u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkf45 */
}

Program 2.2.14
Integrator ssrkf45 for a RKF45 step

The header file for rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, and ssrkf45 is as follows:

/*

Routines for the RK Integration

*/
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#include <math.h>

#define SIZE 500

double rkc4a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double rkc4b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps,double abserr,
double relerr);

double ssrkc4(int neqn, double t0, double u0[], double h,
double u[], double e[]);

double rkf45a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double rkf45b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double ssrkf45(int neqn, double t0, double u0[], double h,
double u[], double e[]);

Program 2.2.15
Header file for rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, ssrkf45

This completes the discussion of the C solution of the 1x1 ODE problem of
Equations 1.3 to 1.5. We now proceed to the programming of this problem in
C++.

2.3 Programming in C++

We present the programming for the remaining languages according to the
organizational principle discussed previously; i.e., the general-purpose rou-
tines are listed first, followed by the application-specific routines, and then
possibly any routines that are somewhere in between. To conclude the discus-
sion of a specific language, we then list the output from the the entire group
of routines.

Thus, we start with the listing of the main program and ODE integrator
routines:
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/*

Numerical solution to the 1 x 1 ODE system by six
integrators

*/

/* Include headers */
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
#include <fstream.h>
#include "ode1x1.h"
#include "Euler.h"
#include "RK.h"

/* Main program */
void main()
{

/* Type variables */
double tp;
int i,j,ncase;

/* Derive objects */
DEF o1;
Euler e1;
RK rk;

/* Open a file for output */
ofstream fout("ode1x1cpp.out",ios::out);

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

{
/* ODE integration parameters */
o1.intpar();

/* Initial condition */
o1.inital();

/* Output interval */
tp=o1.tf-o1.t0;
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/* Step through nout grid points */
for(j=1;j<=o1.nout;j++)

{
/* Print solution */
o1.fprint(fout,ncase,o1.neqn,o1.t0,o1.u0);

/* Select ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler integrator */
case 1:
e1.euler2a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step modified Euler integrator */
case 2:
e1.euler2b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps,o1.abserr,o1.relerr);
break;

/* Fixed step classical fourth order
RK integrator */
case 3:
rk.rkc4a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step classical fourth order
RK integrator */
case 4:
rk.rkc4b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps,o1.abserr,o1.relerr);
break;

/* Fixed step RK Fehlberg (RKF45)
integrator */
case 5:
rk.rkf45a(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps);
break;

/* Variable step RK Fehlberg (RKF45)
integrator */
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case 6:
rk.rkf45b(o1.neqn,o1.t0,o1.tf,o1.u,o1.u0,

o1.nsteps,o1.abserr,o1.relerr);
break;

}

/* Advance solution */
o1.t0=o1.tf;
o1.tf+=tp;
for(i=1;i<=o1.neqn;i++)

{
o1.u0[i]=o1.u[i];

}

/* Next output */
}

/* Next integrator */
}

/* Complete solution computed. Close output file */
fout<<endl;
fout.close();

/* End of main */
}

Program 2.3.1
C++ main program for the numerical integration of Equation 1.3 subject to
initial condition Equation 1.4

Note, again, as in Program 2.2.1, that all six integrators are called within a
single loop.

/* Step through six integrators */
for(ncase=1;ncase<=6;ncase++)

Also, an output file, ode1x1cpp.out is written by this main program.
The associated header files are as follows:

/*

Definition of functions intpar, inital, derv, fprint
for the 1 x 1 ODE system
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*/

/* Include headers */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>
#include <iomanip.h>
#include "MOL.h"

/* Type variables as extern (global) */
extern FILE *fid;

class DEF:public MOL
{

public:

/* Integration parameters */
void intpar();

/* Initial condition */
void inital();

/* Derivative vector */
void derv(double ut[],double t,double u[]);

/* Output */
void fprint(int ncase, int neqn, double t, double u[]);

void fprint(ofstream &fout, int ncase, int neqn,
double t, double u[]);

};

/*

Define the common (global) variables for the
1 x 1 ODE problem

*/

/* Maximum (default) number of ODEs */
#define SIZE 500
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class MOL
{

public:

/* Variables for ODE integration */

int neqn, nout, nsteps;

double t0, tf, abserr, relerr;

double u[SIZE], u0[SIZE], e[SIZE];

};

Program 2.3.2
Header files ode1x1.h and MOL .h used by Program 2.3.1

The ODE integration routines are listed below (ode1x1.h is copied to DE F .h
before execution):

#include "DEF.h"
#include "Euler.h"

double Euler::euler2a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function euler2a computes an ODE solution by the fixed
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for
a single modified Euler step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps
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*/

{
/* Type variables */
double e[SIZE];
double h,t;
int i,j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps modified Euler steps */
for(i=1;i<=nsteps;i++)

{
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);

/* Reset base point values for next modified Euler
step */

for(j=1;j<=neqn;j++)
{

u0[j]=u[j];
}
t0=t;

/* End for */
}

return 0;

/* End of euler2a */
}

Program 2.3.3
Integrator euler2a

double Euler::euler2b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr)

/*
Function euler2b computes an ODE solution by the variable
step modified Euler method for a series of points along
the solution by repeatedly calling function sseuler for a
single modified Euler step. The truncation error is
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estimated along the solution to adjust the integration
step according to a specified error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of modified Euler steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin,t;
int i, nfin1;
double e[SIZE];

/* Integration step */
h=(tf-t0)/8.0;

/* Minimum allowable step */
hmin=(tf-t0)/(float)(nsteps);

/* Start integration */
t=t0;

/* While independent variable is less than the final */
while(t <= tf*0.999)

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}
/* Single modified Euler step */
t=sseuler(neqn,t0,u0,h,u,e);
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/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h< hmin)

{
h = (float)hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{

if(fabs(e[i]) > ((fabs(u[i])*relerr+abserr)/4.0))

{
/* Integration step cannot be increased */
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nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of euler2b */
}

Program 2.3.4
Integrator euler2b

double Euler::sseuler(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function sseuler computes an ODE solution by the modified
Euler method for one step along the solution (by calls to
derv to define the ODE derivative vector). It also
estimates the truncation error of the solution, and
applies this estimate as a correction to the solution
vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step
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t independent variable

u ODE solution vector of length neqn after
one modified Euler step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[SIZE], ut[SIZE];
double t;
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* First order (Euler) step */
for(j=1;j<=neqn;j++)

{
u[j]=u0[j]+ut0[j]*h;

}
t=t0+h;

/* Derivative at advance point */
derv(ut,t,u);

/* Second order (modified Euler) step */
for(j=1;j<=neqn;j++)

{
/* Truncation error estimate */
e[j]=(ut[j]-ut0[j])*h/2.0;

/* Second order (modified Euler) solution vector */
u[j]=u[j]+e[j];

}

return t;

/* End of sseuler */
}

Program 2.3.5
Integrator sseuler for a single modified Euler step
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/*

Routines for the Euler ODE Integration

*/

class Euler:public DEF
{

public:

double euler2a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double euler2b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double sseuler(int neqn, double t0, double u0[], double h,
double u[], double e[]);

};

Program 2.3.6
Header file euler.h for euler2a, euler2b, and sseuler

#include "DEF.h"
#include "RK.h"

double RK::rkc4a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function rkc4a computes an ODE solution by the fixed step
classical fourth order RK method for a series of points
along the solution by repeatedly calling function ssrkc4
for a single classical fourth order RK step.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable



186 Ordinary and Partial Differential Equation Routines

u0 initial condition vector of length neqn

nsteps number of rkc4 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
int i, j;
double t, h, e[SIZE];

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkc4 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Reset base point values for next rk4c step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

}

return 0;

/* End of rkc4a */
}

Program 2.3.7
Integrator rkc4a

double RK::rkc4b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr)

/*
Function rkc4b computes an ODE solution by a variable
step classical fourth order RK method for a series of
points along the solution by repeatedly calling function
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ssrkc4 for a single classical fourth order RK step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkc4 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int nfin1, i;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;

/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
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if((t+h) > tf)
{

h=tf-t;
}

/* Single rkc4 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h=hmin;
nfin1=1;

}
break;

}
}

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;
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/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/16.0))
{

/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkc4b */
}

Program 2.3.8
Integrator rkc4b

double RK::ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[])

/*
Function ssrkc4 computes an ODE solution by the classical
fourth order RK method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the solution
vector.
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Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkc4 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double ut0[SIZE], ut[SIZE], u4[SIZE];
double t, k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.5*k1[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+0.5*k2[j];

}
t=t0+0.5*h;
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/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+k3[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/*k4; second and fourth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+k2[j];

u4[j]=u0[j]+(1.0/6.0)*(k1[j]+2.0*k2[j]+2.0*k3[j]
+k4[j]);

e[j]=u4[j]-u[j];
u[j]=u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkc4 */
}

Program 2.3.9
Integrator ssrkc4 for a classical fourth-order RK step

double RK::rkf45a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps)

/*
Function rkf45a computes an ODE solution by the fixed
step RK Fehlberg 45 RK method for a series of points
along the solution by repeatedly calling function
ssrkf45 for a single RK Fehlberg 45 step.
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Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps number of rkf45 steps

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double t, h, e[SIZE];
int i, j;

/* Integration step */
h=(tf-t0)/nsteps;

/* nsteps rkf45 steps */
for(i=1;i<=nsteps;i++)

{
/* Single rkf45 step */
t=ssrkf45(neqn,t0,u0,h,u,e);

/* Reset base point values for next rkf45 step */
for(j=1;j<=neqn;j++)

{
u0[j]=u[j];

}
t0=t;

/* End for */
}

return 0;

/* End of rkf45a */
}

Program 2.3.10
Integrator rkf45a
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double RK::rkf45b(int neqn, double t0, double tf,
double u[],double u0[],int nsteps,
double abserr,double relerr)

/*
Function rkf45b computes an ODE solution by a variable
step classical RK Fehlberg 45 method for a series of
points along the solution by repeatedly calling
function ssrkf45 for a single RK Fehlberg 45 step. The
truncation error is estimated along the solution to
adjust the integration step according to a specified
error tolerance.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

tf final value of independent variable

u0 initial condition vector of length neqn

nsteps maximum number of rkf45 steps

abserr absolute error tolerance

relerr relative error tolerance

u ODE solution vector of length neqn after
nsteps steps

*/
{

/* Type variables */
double h, hmin, t, e[SIZE];
int i, nfin1;

/* Integration step */
h=(tf-t0)/2.0;

/* Minimum allowable step */
hmin=(tf-t0)/nsteps;

/* Start integration */
t=t0;
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/* While independent variable is less than the final
value, continue the integration */
while(t <= (tf*0.999))

{
/* If the next step along the solution will go past
the final value of the independent variable, set the
step to the remaining distance to the final value */
if((t+h) > tf)

{
h=tf-t;

}

/* Single rkf45 step */
t=ssrkc4(neqn,t0,u0,h,u,e);

/* Flag for the end of the integration */
nfin1=1;

/* Check if any of the ODEs have violated the error
criterion */
for (i=1;i<=neqn;i++)

{
if(fabs(e[i]) > (fabs(u[i])*relerr+abserr))

{
/* Error violation, so integration is
incomplete. Reduce integration step because
of error violation and repeat integration
from base point */
nfin1=0;
h=h/2.0;

/* If the current step is less than the
minimum allowable step, set the step to the
minimum allowable value and continue
integration from new base point */
if(h < hmin)

{
h = hmin;
nfin1=1;

}
break;

}

}



Solution of a 1 x 1 ODE System 195

/* If there is no error violation, continue the
integration from the new base point */
if(nfin1 == 1)

{
for(i=1;i<=neqn;i++)

{
u0[i]=u[i];

}
t0=t;

/* Test if integration step can be increased */
for(i=1;i<=neqn;i++)

{
if(fabs(e[i]) > ((fabs(u[i])*relerr

+abserr)/32.0) )
{
/* Integration step cannot be increased */
nfin1=0;
break;

}
}

/* Increase integration step */
if(nfin1 == 1)

{
h=h*2.0;

}

/* End if */
}

/* End while */
}

return 0;

/* End of rkf45b */
}

Program 2.3.11
Integrator rkf45b

double RK::ssrkf45(int neqn, double t0, double u0[],
double h, double u[], double e[])
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/*
Function ssrkf45 computes an ODE solution by the RK
Fehlberg 45 method for one step along the solution
(by calls to derv to define the ODE derivative vector).
It also estimates the truncation error of the solution,
and applies this estimate as a correction to the
solution vector.

Argument list

neqn number of first order ODEs

t0 initial value of independent variable

u0 initial condition vector of length neqn

h integration step

t independent variable

u ODE solution vector of length neqn after
one rkf45 step

e estimate of truncation error of the solu-
tion vector

*/
{

/* Type variables */
double t, ut0[SIZE], ut[SIZE], u5[SIZE];
double k1[SIZE], k2[SIZE], k3[SIZE], k4[SIZE], k5[SIZE],

k6[SIZE];
int j;

/* Derivative vector at initial (base) point */
derv(ut0,t0,u0);

/* k1; stepping for k2 */
for(j=1;j<=neqn;j++)

{
k1[j]=h*ut0[j];
u[j]=u0[j]+0.25*k1[j];

}
t=t0+0.25*h;
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/* Derivative vector at next RK point */
derv(ut,t,u);

/* k2; stepping for k3 */
for(j=1;j<=neqn;j++)

{
k2[j]=h*ut[j];
u[j]=u0[j]+(3.0/32.0)*k1[j]

+(9.0/32.0)*k2[j];
}
t=t0+(3.0/8.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k3; stepping for k4 */
for(j=1;j<=neqn;j++)

{
k3[j]=h*ut[j];
u[j]=u0[j]+(1932.0/2197.0)*k1[j]

-(7200.0/2197.0)*k2[j]
+(7296.0/2197.0)*k3[j];

}
t=t0+(12.00/13.0)*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k4; stepping for k5 */
for(j=1;j<=neqn;j++)

{
k4[j]=h*ut[j];
u[j]=u0[j]+( 439.0/ 216.0)*k1[j]

-( 8.0 )*k2[j]
+(3680.0/ 513.0)*k3[j]
-( 845.0/4104.0)*k4[j];

}
t=t0+h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k5; stepping for k6 */
for(j=1;j<=neqn;j++)

{
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k5[j]=h*ut[j];
u[j]=u0[j]-( 8.0/ 27.0)*k1[j]

+( 2.0 )*k2[j]
-(3544.0/2565.0)*k3[j]
+(1859.0/4104.0)*k4[j]
-( 11.0/ 40.0)*k5[j];

}
t=t0+0.5*h;

/* Derivative vector at next RK point */
derv(ut,t,u);

/* k6; fourth and fifth order step; error estimate; error
correction */
for(j=1;j<=neqn;j++)

{
k6[j]=h*ut[j];
u[j]=u0[j]+( 25.0/ 216.0)*k1[j]

+( 1408.0/2565.0)*k3[j]
+( 2197.0/4104.0)*k4[j]
-( 1.0/ 5.0)*k5[j];

u5[j]=u0[j]+( 16.0/ 135.0)*k1[j]
+( 6656.0/12825.0)*k3[j]
+(28561.0/56430.0)*k4[j]
-( 9.0/ 50.0)*k5[j]
+( 2.0/ 55.0)*k6[j];

e[j]=u5[j]-u[j];
u[j]= u[j]+e[j];

}
t=t0+h;

return t;

/* End of ssrkf45 */
}

Program 2.3.12
Integrator ssrkf45 for an RKF45 step

/*

Routines for the RK Integration

*/
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class RK:public DEF
{
public:

double rkc4a(int neqn, double t0, double tf, double u[],
double u0[], int nsteps);

double rkc4b(int neqn, double t0, double tf, double u[],
double u0[], int nsteps, double abserr,
double relerr);

double ssrkc4(int neqn, double t0, double u0[],
double h, double u[], double e[]);

double rkf45a(int neqn, double t0, double tf,
double u[], double u0[], int nsteps);

double rkf45b(int neqn, double t0, double tf,
double u[], double u0[], int nsteps,
double abserr, double relerr);

double ssrkf45(int neqn, double t0, double u0[],
double h, double u[], double e[]);

};

Program 2.3.13
Header file for rkc4a , rkc4b, ssrkc4, rkf45a , rkf45b, ssrk f 45

#include "DEF.h"
#include <iomanip.h>

/* Define file ID */
FILE *fid;

void DEF::intpar()

/* Function intpar sets the parameters to control the
integration of the 1 x 1 ODE system */
{

/* Number of ODEs */
neqn=1;

/* Number of output points */
nout=6;
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/* Maximum number of steps in the interval t0 to tf */
nsteps=100;

/* Initial, final values of independent variable */
t0=0.0;
tf=1.0;

/* Error tolerances */
abserr=pow(10.0,-5.0);
relerr=pow(10.0,-5.0);

/* End of intpar */
}

void DEF::inital()

/* Function inital sets the initial condition vector for
the 1 x 1 ODE problem */
{

/* Initial condition */
u0[1]=1.0;

/* End of inital */
}

void DEF::derv(double ut[], double t, double u[])

/* Function derv computes the derivatives vector of the
1 x 1 ODE problem */
{

/* Type variables */
double alpha, lambda;

/* Problem parameters */
alpha=1.0;
lambda=1.0;

/* Derivative vector */
ut[1]=lambda*exp(-alpha*t)*u[1];

/* End of derv */
}
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void DEF::fprint(int ncase, int neqn, double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem; this routine is
implemented in the traditional C style*/
{

/* Type variables */
double ue[2], diff[2];
double u0, alpha, lambda;

/* Problem parameters */
u0=1.0;
alpha=1.0;
lambda=1.0;

/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/*Fixed step modified Euler */
case 1:
fprintf(fid,"\n\n euler2a integrator\n\n");
break;

/* Variable step modified Euler */
case 2:
fprintf(fid,"\n\n euler2b integrator\n\n");
break;

/* Fixed step classical fourth order RK */
case 3:
fprintf(fid,"\n\n rkc4a integrator\n\n");
break;

/* Variable step classical fourth order RK */
case 4:
fprintf(fid,"\n\n rkc4b integrator\n\n");
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fprintf(fid,"\n\n rkf45a integrator\n\n");
break;
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/* Variable step RK Fehlberg 45 */
case 6:
fprintf(fid,"\n\n rkf45b integrator\n\n");
break;

}

/* Heading */
fprintf(fid,"\n t u1(num) u1(ex) diff1\n\n");

}

/* Analytical solution */
ue[1]=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));

/* Difference between exact and numerical solutions */
diff[1]=u[1]-ue[1];

/* Display the numerical and exact solutions, and their
difference */

fprintf(fid,"%10.2f %10.5f %10.5f %13.4e\n\n",t,u[1],
ue[1],diff[1]);

/* End of fprint */
}

void DEF::fprint(ofstream &fout, int ncase, int neqn,
double t, double u[])

/* Function fprint displays the numerical and exact
solutions to the 1 x 1 ODE problem; this function is
implemented in the C++ style */
{

/* Type variables */
double ue[2], diff[2];
double u0, alpha, lambda;

/* Problem parameters */
u0=1.0;
alpha=1.0;
lambda=1.0;

/* Set printing format */
fout<<setiosflags(ios::showpoint|ios::fixed)

<<setprecision(7);
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/* Print a heading for the solution at t = 0 */
if(t<=0.0)

{
/* Label for ODE integrator */
switch(ncase)

{
/* Fixed step modified Euler */
case 1:
fout<<"\n\n euler2a integrator\n";
break;

/* Variable step modified Euler */
case 2:
fout<<"\n\n euler2b integrator\n";
break;

/* Fixed step classical fourth order RK */
case 3:
fout<<"\n\n rkc4a integrator\n";
break;

/* Variable step classical fourth order RK */
case 4:
fout<<"\n\n rkc4b integrator\n";
break;

/* Fixed step RK Fehlberg 45 */
case 5:
fout<<"\n\n rkf45a integrator\n";
break;

/* Variable step RK Fehlberg 45 */
case 6:
fout<<"\n\n rkf45b integrator\n";
break;

}

/* Heading */
fout<<endl;
fout<<" t"<<setw(18)<<"u1(num)"<<setw(11)

<<"u1(ex)"<<setw(10)<<"diff"<<"\n";

/* End of t = 0 heading */
}
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/* Analytical solution */
ue[1]=u0*exp(lambda/alpha*(1.0-exp(-alpha*t)));

/* Difference between exact and numerical solutions */
diff[1]=u[1]-ue[1];
fout<<endl;

/* Display the numerical and exact solutions, and their
difference */
fout<<setw(10)<<t<<setw(12)<<u[1]<<setw(12)<<ue[1]

<<setw(12)<<diff[1];

/* End of fprint */
}

Program 2.3.14
intpar, inital, derv, and fprint called in the solution of Equations 1.3 and 1.4

The output from the preceding routines (written to file ode1x1cpp.out in
Program 2.3.1) is as follows:

euler2a integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815963 1.8815964 -0.0000001
2.0000000 2.3742138 2.3742099 0.0000039
3.0000000 2.5862663 2.5862603 0.0000060
4.0000000 2.6689549 2.6689479 0.0000069
5.0000000 2.7000350 2.7000278 0.0000073

euler2b integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815902 1.8815964 -0.0000062
2.0000000 2.3742061 2.3742099 -0.0000038
3.0000000 2.5862606 2.5862603 0.0000003
4.0000000 2.6689516 2.6689479 0.0000037
5.0000000 2.7000340 2.7000278 0.0000062
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rkc4a integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815964 1.8815964 0.0000000
2.0000000 2.3742099 2.3742099 0.0000000
3.0000000 2.5862603 2.5862603 0.0000000
4.0000000 2.6689479 2.6689479 0.0000000
5.0000000 2.7000278 2.7000278 0.0000000

rkc4b integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815963 1.8815964 0.0000000
2.0000000 2.3742100 2.3742099 0.0000001
3.0000000 2.5862604 2.5862603 0.0000001
4.0000000 2.6689480 2.6689479 0.0000001
5.0000000 2.7000279 2.7000278 0.0000001

rkf45a integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815964 1.8815964 0.0000000
2.0000000 2.3742099 2.3742099 0.0000000
3.0000000 2.5862603 2.5862603 0.0000000
4.0000000 2.6689479 2.6689479 0.0000000
5.0000000 2.7000278 2.7000278 0.0000000

rkf45b integrator

t u1(num) u1(ex) diff

0.0000000 1.0000000 1.0000000 0.0000000
1.0000000 1.8815963 1.8815964 0.0000000
2.0000000 2.3742100 2.3742099 0.0000001
3.0000000 2.5862604 2.5862603 0.0000001
4.0000000 2.6689480 2.6689479 0.0000001
5.0000000 2.7000279 2.7000278 0.0000001

We note again that the output verifies the operation of all six integrators. The
fixed step integrators (rkc4a , rkf45a , and ssrkc4) generally surpass the error
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tolerances set in intpar, with rkf45a and ssrkc4 producing excessive accuracy;
the variable step integrators (rkc4b, rkf45b, and ssrkc4) produce numerical
solutions consistent with the error tolerances.

This completes the programming of the 1x1 ODE problem in C++. We now
move on to Fortran.

2.4 Programming in Fortran

Again, we start with the listing of the main program and ODE integrator
routines:

program ode1x1
C
C Numerical solution to the 1 x 1 ODE system by six
C integrators
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size arrays

parameter(neq=500)
dimension u0(neq),u(neq)

C
C Open a file for output

no=2
open(no,file='ode1x1for.out')

C
C Step through six integrators

do ncase=1,6
C
C Integration parameters

call intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Initial condition

call inital(neqn,t0,u0)
C
C Output time

tp=tf-t0
C
C Step through nout grid points

do j=1,nout
C
C Print solution

call fprint(no,ncase,neqn,t0,u0)
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C
C Select ODE integrator
C
C Fixed step modified Euler integrator

if(ncase.eq.1)then
call euler2a(neqn,t0,tf,u0,nsteps,u)

end if
C
C Variable step modified Euler integrator

if(ncase.eq.2)then
call euler2b(neqn,t0,tf,u0,nsteps,abserr,

relerr,u)
end if

C
C Fixed step classical fourth order RK integrator

if(ncase.eq.3)then
call rkc4a(neqn,t0,tf,u0,nsteps,u)

end if
C
C Variable step classical fourth order RK integrator

if(ncase.eq.4)then
call rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)

end if
C
C Fixed step RK Fehlberg (RKF45) integrator

if(ncase.eq.5)then
call rkf45a(neqn,t0,tf,u0,nsteps,u)

end if
C
C Variable step Fehlberg (RKF45) integrator

if(ncase.eq.6)then
call rkf45b(neqn,t0,tf,u0,nsteps,abserr,

relerr,u)
end if

C
C Advance solution

t0=tf
tf=tf+tp
do i=1,neqn

u0(i)=u(i)
end do

C
C Next output

end do
C
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C Next integrator
end do

C
C End of ode1x1

end

Program 2.4.1
Fortran main program ode1x1 for the numerical integration of Equation 1.3
subject to initial condition Equation 1.4

Note again, as in Programs 2.2.1 and 2.3.1, that all six integrators are called
within a single loop.

C
C Step through six integrators

do ncase=1,6

Also, an output file, ode1x1f.out is written by this main program.
The ODE integration routines are listed below:

subroutine euler2a(neqn,t0,tf,u0,nsteps,u)
C
C Subroutine euler2a computes an ODE solution by a fixed
C step modified Euler method for a series of points along
C the solution by repeatedly calling subroutine sseuler for
C a single modified Euler step.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps number of modified Euler steps
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size arrays

dimension u0(neqn), u(neqn), e(neqn)
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C
C Integration step

h=(tf-t0)/dfloat(nsteps)
C
C nsteps modified Euler steps

do j=1,nsteps
C
C Modified Euler step

call sseuler(neqn,t0,u0,h,t,u,e)
C
C Reset base point values for the next modified
C Euler step

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Next modified Euler step

end do
C
C nsteps modified Euler steps completed

return
C
C End of euler2a

end

Program 2.4.2
Integrator euler2a

subroutine euler2b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
C
C Subroutine euler2b computes an ODE solution by a variable
C step modified Euler method for a series of points along
C the solution by repeatedly calling subroutine sseuler for
C a single modified Euler step. The truncation error is
C estimated along the solution to adjust the integration
C step according to a specified error tolerance.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
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C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps maximum number of modified Euler steps
C
C abserr absolute error tolerance
C
C relerr relative error tolerance
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Initial integration step

h=(tf-t0)/8.0d0
C
C Minimum allowable step

hmin=(tf-t0)/dfloat(nsteps)
C
C Start integration

t=t0
C
C While independent variable is less than the final
C value, continue the integration

do while(t.le.tf*0.999d0)
C
C If the next step along the solution will go past
C the final value of the independent variable, set
C the step to the remaining distance to the final
C value

if((t+h).gt.tf)then
h=tf-t

end if
C
C Single modified Euler step

call sseuler(neqn,t0,u0,h,t,u,e)
C
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C Flag for the end of the integration
nfin1=1

C
C Check if any of the ODEs have violated the error
C criteria

do i=1,neqn
if(dabs(e(i)).gt.dabs(u(i))*relerr+abserr)then

C
C Error violation, so integration is not
C complete. Reduce integration step because
C of error violation and repeat integration
C from the base point

nfin1=0
h=h/2.0d0

C
C If the current step is less than the minimum
C allowable step, set the step to the minimum
C allowable value and continue integration from
C new base point

if(h.lt.hmin)then
h=hmin
nfin1=1

end if
go to 1

end if
end do

C
C If there is no error violation, continue the
C integration from new base point
1 if(nfin1.eq.1)then

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Test if integration step can be increased

do i=1,neqn
if(dabs(e(i)).gt.(dabs(u(i))*relerr+abserr)

/4.0d0)then
C
C Integration step cannot be increased

go to 2
end if

end do
C
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C Increase integration step
h=h*2.0d0

C
C Continue for no error violation (nfin1=1)
2 end if

C
C Continue do while

end do
return

C
C End of euler2b

end

Program 2.4.3
Integrator euler2b

subroutine sseuler(neqn,t0,u0,h,t,u,e)
C
C Subroutine sseuler computes an ODE solution by the
C modified Euler method for one step along the solution
C (by calls to derv to define the ODE derivative vector).
C It also estimates the truncation error of the solution,
C and applies this estimate as a correction to the
C solution vector.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C u0 initial condition vector of length neqn
C
C h integration step
C
C t independent variable
C
C u ODE solution vector of length neqn after
C one modified Euler step
C
C e estimate of truncation error of the solu-
C tion vector
C
C Double precision coding is used

implicit double precision(a-h,o-z)
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C
C Size the arrays

parameter(neq=500)
dimension ut(neq),ut0(neq)
dimension u0(neqn), u(neqn), e(neqn)

C
C Derivative vector at initial (base) point

call derv(neqn,t0,u0,ut0)
C
C First order (Euler) step

do i=1,neqn
u(i)=u0(i)+ut0(i)*h

end do
t=t0+h

C
C Derivative vector at advance point

call derv(neqn,t,u,ut)
C
C Second order step

do i=1,neqn
C
C Truncation error estimate

e(i)=(ut(i)-ut0(i))*h/2.0d0
C
C Second order (modified Euler) solution vector

u(i)=u(i)+e(i)
end do
return

C
C End of sseuler

end

Program 2.4.4
Integrator sseuler for a single modified Euler step

subroutine rkc4a(neqn,t0,tf,u0,nsteps,u)
C
C Subroutine rkc4a computes an ODE solution by a fixed step
C rkc4 method for a series of points along the solution by
C repeatedly calling subroutine ssrkc4 for a single rkc4
C step.
C
C Argument list
C
C neqn number of first order ODEs
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C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps number of rkc4 steps
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Integration step

h=(tf-t0)/dfloat(nsteps)
C
C nsteps rkc4 steps

do j=1,nsteps
C
C Single rkc4 step

call ssrkc4(neqn,t0,u0,h,t,u,e)
C
C Reset base point values for the next rkc4 step

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Next rkc4 step

end do
C
C nsteps rkc4 steps completed

return
C
C End of rkc4a

end

Program 2.4.5
Integrator rkc4a
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subroutine rkc4b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
C
C Subroutine rkc4b computes an ODE solution by a variable
C step classical fourth order RK method for a series of
C points along the solution by repeatedly calling
C subroutine ssrkc4 for a single classical fourth order RK
C step. The truncation error is estimated along the
C solution to adjust the integration step according to a
C specified error tolerance.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps maximum number of rkc4 steps
C
C abserr absolute error tolerance
C
C relerr relative error tolerance
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Integration step

h=(tf-t0)/2.0d0
C
C Minimum allowable step

hmin=(tf-t0)/dfloat(nsteps)
C
C Start integration

t=t0
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C
C While independent variable is less than the final
C value, continue the integration

do while(t.le.tf*0.999d0)
C
C If the next step along the solution will go past
C the final value of the independent variable, set
C the step to the remaining distance to the final
C value

if((t+h).gt.tf)then
h=tf-t

end if
C
C Single rkc4 step

call ssrkc4(neqn,t0,u0,h,t,u,e)
C
C Flag for the end of the integration

nfin1=1
C
C Check if any of the ODEs have violated the error
C critreria

do i=1,neqn
if(dabs(e(i)).gt.dabs(u(i))*relerr+abserr)then

C
C Error violation, so integration is not
C complete. Reduce integration step because
C of error violation and repeat integration
C from the base point

nfin1=0
h=h/2.0d0

C
C If the current step is less than the minimum
C allowable step, set the step to the minimum
C allowable value and continue integration from
C new base point

if(h.lt.hmin)then
h=hmin
nfin1=1

end if
go to 1

end if
end do

C
C If there is no error violation, continue the
C integration from new base point
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1 if(nfin1.eq.1)then
do i=1,neqn

u0(i)=u(i)
end do
t0=t

C
C Test if integration step can be increased

do i=1,neqn
if(dabs(e(i)).gt.(dabs(u(i))*relerr+abserr)

/16.0d0)then
C
C Integration step cannot be increased

go to 2
end if

end do
C
C Increase integration step

h=h*2.0d0
C
C Continue for no error violation (nfin1=1)
2 end if

C
C Continue do while

end do
return

C
C End of rkc4b

end

Program 2.4.6
Integrator rkc4b

subroutine ssrkc4(neqn,t0,u0,h,t,u,e)
C
C Subroutine ssrkc4 computes an ODE solution by the
C classical fourth order RK method for one step along the
C solution (by calls to derv to define the ODE derivative
C vector). It also estimates the truncation error of the
C solution, and applies this estimate as a correction
C to the solution vector.
C
C Argument list
C
C neqn number of first order ODEs
C
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C t0 initial value of independent variable
C
C u0 initial condition vector of length neqn
C
C h integration step
C
C t independent variable
C
C u ODE solution vector of length neqn after
C one rkc4 step
C
C e estimate of truncation error of the solu-
C tion vector
C
C Double precision coding is used

implicit double precision(a-h,k,o-z)
C

C Size the arrays
parameter(neq=500)
dimension ut0(neq), ut(neq), u4(neq),

+ k1(neq), k2(neq), k3(neq), k4(neq)
dimension u0(neqn), u(neqn), e(neqn)

C
C Derivative vector at initial (base) point

call derv(neqn,t0,u0,ut0)
C
C k1, advance of dependent variable vector and
C independent variable for calculation of k2

do i=1,neqn
k1(i)=h*ut0(i)
u(i)=u0(i)+0.5d0*k1(i)

end do
t=t0+0.5d0*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k2, advance of dependent variable vector and
C independent variable for calculation of k3

do i=1,neqn
k2(i)=h*ut(i)
u(i)=u0(i)+0.5d0*k2(i)

end do
t=t0+0.5d0*h

C
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C Derivative vector at new u, t
call derv(neqn,t,u,ut)

C
C k3, advance of dependent variable vector and
C independent variable for calculation of k4

do i=1,neqn
k3(i)=h*ut(i)
u(i)=u0(i)+k3(i)

end do
t=t0+h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k4, stepping

do i=1,neqn
k4(i)=h*ut(i)

C
C Second order step

u(i)=u0(i)+k2(i)
C
C Fourth order step

u4(i)=u0(i)+(1.0d0/6.0d0)*(k1(i)+2.0d0*k2(i)
+2.0d0*k3(i)+k4(i))

end do
do i=1,neqn

C
C Truncation error estimate

e(i)=u4(i)-u(i)
C
C Fourth order solution vector (from (2,4) RK pair)

u(i)=u(i)+e(i)
end do
return

C
C End of ssrkc4

end

Program 2.4.7
Integrator ssrkc4 for a classical fourth-order RK step

subroutine rkf45a(neqn,t0,tf,u0,nsteps,u)
C
C Subroutine rkf45a computes an ODE solution by a fixed
C step rkf45 method for a series of points along the
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C solution by repeatedly calling subroutine ssrkf45 for
C a single rkf45 step.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps number of rkf45 steps
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C
C Size arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
C Integration step

h=(tf-t0)/dfloat(nsteps)
C
C nsteps rkf45 steps

do j=1,nsteps
C
C Single rkf45 step

call ssrkf45(neqn,t0,u0,h,t,u,e)
C
C Reset base point values for the next rkf45 step

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Next rkf45 step

end do
C
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C nsteps rkf45 steps completed
return

C
C End of rkf45a

end

Program 2.4.8
Integrator rkf45a

subroutine rkf45b(neqn,t0,tf,u0,nsteps,abserr,relerr,u)
C
C Subroutine rkf45b computes an ODE solution by a variable
C step RK Fehlberg method for a series of points along the
C solution by repeatedly calling subroutine ssrkf45 for a
C single RK Fehlberg step. The truncation error is
C estimated along the solution to adjust the integration
C step according to a specified error tolerance.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C tf final value of independent variable
C
C u0 initial condition vector of length neqn
C
C nsteps maximum number of rkf45 steps
C
C abserr absolute error tolerance
C
C relerr relative error tolerance
C
C u ODE solution vector of length neqn after
C nsteps steps
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

parameter(neq=500)
dimension e(neq)
dimension u0(neqn), u(neqn)

C
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C Initial integration step
h=(tf-t0)/2.0d0

C
C Minimum allowable step

hmin=(tf-t0)/dfloat(nsteps)
C
C Start integration

t=t0
C
C While independent variable is less than the final
C value, continue the integration

do while(t.le.tf*0.999d0)
C
C If the next step along the solution will go past
C the final value of the independent variable, set
C the step to the remaining distance to the final
C value

if((t+h).gt.tf)then
h=tf-t

end if
C
C Single rkf45 step

call ssrkf45(neqn,t0,u0,h,t,u,e)
C
C Flag for the end of the integration

nfin1=1
C
C Check if any of the ODEs have violated the error
C criteria

do i=1,neqn
if(dabs(e(i)).gt.dabs(u(i))*relerr+abserr)then

C
C Error violation, so integration is not
C complete. Reduce integration step because
C of error violation and repeat integration
C from the base point

nfin1=0
h=h/2.0d0

C
C If the current step is less than the minimum
C allowable step, set the step to the minimum
C allowable value and continue integration from
C new base point

if(h.lt.hmin)then
h=hmin
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nfin1=1
end if
go to 1

end if
end do

C
C If there is no error violation, continue the
C integration from new base point
1 if(nfin1.eq.1)then

do i=1,neqn
u0(i)=u(i)

end do
t0=t

C
C Test if integration step can be increased

do i=1,neqn
if(dabs(e(i)).gt.(dabs(u(i))*relerr+abserr)

/32.0d0)then
C
C Integration step cannot be increased

go to 2
end if

end do
C
C Increase integration step

h=h*2.0d0
C
C Continue for no error violation (nfin1=1)
2 end if

C
C Continue do while

end do
return

C
C End of rkf45b

end

Program 2.4.9
Integrator rkf45b

subroutine ssrkf45(neqn,t0,u0,h,t,u,e)
C
C Subroutine ssrkf45 computes an ODE solution by the RK
C Fehlberg 45 method for one step along the solution (by
C calls to derv to define the ODE derivative vector).
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C It also estimates the truncation error of the solution,
C and applies this estimate as a correction to the
C solution vector.
C
C Argument list
C
C neqn number of first order ODEs
C
C t0 initial value of independent variable
C
C u0 initial condition vector of length neqn
C
C h integration step
C
C t independent variable
C
C u ODE solution vector of length neqn after
C one rkf45 step
C
C e estimate of truncation error of the solu-
C tion vector
C
C Double precision coding is used

implicit double precision(a-h,k,o-z)
C
C Size the arrays

parameter(neq=500)
dimension ut0(neq), ut(neq), u5(neq),

+ k1(neq), k2(neq), k3(neq),
+ k4(neq), k5(neq), k6(neq)
dimension u0(neqn), u(neqn), e(neqn)

C
C Derivative vector at initial (base) point

call derv(neqn,t0,u0,ut0)
C
C k1, advance of dependent variable vector and
C independent variable for calculation of k2

do i=1,neqn
k1(i)=h*ut0(i)
u(i)=u0(i)+0.25d0*k1(i)

end do
t=t0+0.25d0*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
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C
C k2, advance of dependent variable vector and
C independent variable for calculation of k3

do i=1,neqn
k2(i)=h*ut(i)
u(i)=u0(i)+(3.0d0/32.0d0)*k1(i)

+ +(9.0d0/32.0d0)*k2(i)
end do
t=t0+(3.0d0/8.0d0)*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k3, advance of dependent variable vector and
C independent variable for calculation of k4

do i=1,neqn
k3(i)=h*ut(i)
u(i)=u0(i)+(1932.0d0/2197.0d0)*k1(i)

+ -(7200.0d0/2197.0d0)*k2(i)
+ +(7296.0d0/2197.0d0)*k3(i)
end do
t=t0+(12.0d0/13.0d0)*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k4, advance of dependent variable vector and
C independent variable for calculation of k5

do i=1,neqn
k4(i)=h*ut(i)
u(i)=u0(i)+( 439.0d0/ 216.0d0)*k1(i)

+ -( 8.0d0 )*k2(i)
+ +(3680.0d0/ 513.0d0)*k3(i)
+ -( 845.0d0/4104.0d0)*k4(i)
end do
t=t0+h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k5, advance of dependent variable vector and
C independent variable for calculation of k6

do i=1,neqn
k5(i)=h*ut(i)
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u(i)=u0(i)-( 8.0d0/ 27.0d0)*k1(i)
+ +( 2.0d0 )*k2(i)
+ -(3544.0d0/2565.0d0)*k3(i)
+ +(1859.0d0/4104.0d0)*k4(i)
+ -( 11.0d0/ 40.0d0)*k5(i)
end do
t=t0+0.5d0*h

C
C Derivative vector at new u, t

call derv(neqn,t,u,ut)
C
C k6, stepping

do i=1,neqn
k6(i)=h*ut(i)

C
C Fourth order step

u(i)=u0(i)+( 25.0d0 / 216.0d0)*k1(i)
+ +(1408.0d0 / 2565.0d0)*k3(i)
+ +(2197.0d0 / 4104.0d0)*k4(i)
+ -( 1.0d0 / 5.0d0)*k5(i)

C
C Fifth order step

u5(i)=u0(i)+( 16.0d0/ 135.0d0)*k1(i)
+ +( 6656.0d0/12825.0d0)*k3(i)
+ +(28561.0d0/56430.0d0)*k4(i)
+ -( 9.0d0/ 50.0d0)*k5(i)
+ +( 2.0d0/ 55.0d0)*k6(i)
end do
do i=1,neqn

C
C Truncation error estimate

e(i)=u5(i)-u(i)
C
C Fifth order solution vector (from (4,5) RK pair)

u(i)=u(i)+e(i)
end do
t=t0+h
return

C
C End of ssrkf45

end

Program 2.4.10
Integrator ssrkf45 for an RKF45 step
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subroutine intpar(neqn,nout,nsteps,t0,tf,abserr,relerr)
C
C Subroutine intpar sets the parameters to control the
C integration of the 1 x 1 ODE system
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Number of ODEs

neqn=1
C
C Number of output points

nout=6
C
C Maximum number of steps in the interval t0 to tf

nsteps=100
C
C Initial, final values of the independent variable

t0=0.0d0
tf=1.0d0

C
C Error tolerances

abserr=1.0d-05
relerr=1.0d-05
return

C
C End of intpar

end

subroutine inital(neqn,t,u0)
C
C Subroutine inital sets the initial condition vector
C for the 1 x 1 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,o-z)
C
C Size the arrays

dimension u0(neqn)
C
C Initial condition

u0(1)=1.0d0
return

C



228 Ordinary and Partial Differential Equation Routines

C End of inital
end

subroutine derv(neqn,t,u,ut)
C
C Subroutine derv computes the derivative vector
C of the 1 x 1 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,l,o-z)
C
C Size the arrays

dimension u(neqn), ut(neqn)
C
C Problem parameters

alpha=1.0d0
lambda=1.0d0

C
C Derivative vector

ut(1)=lambda*dexp(-alpha*t)*u(1)
return

C
C End of derv

end

subroutine fprint(no,ncase,neqn,t,u)
C
C Subroutine fprint displays the numerical and
C analytical solutions to the 1 x 1 ODE problem
C
C Double precision coding is used

implicit double precision(a-h,l,o-z)
C
C Size the arrays

dimension u(neqn)
C
C Problem parameters

u0=1.0d0
alpha=1.0d0
lambda=1.0d0

C
C Print a heading for the solution at t = 0

if(t.le.0.0d0)then
C
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C Label for ODE integrator
C
C Fixed step modfied Euler

if(ncase.eq.1)then
write(no,11)

11 format(//,6x,'euler2a integrator')
C
C Variable step modified Euler

else if(ncase.eq.2)then
write(no,12)

12 format(//,6x,'euler2b integrator')
C
C Fixed step classical fourth order RK

else if(ncase.eq.3)then
write(no,13)

13 format(//,6x,'rkc4a integrator')
C
C Variable step classical fourth order RK

else if(ncase.eq.4)then
write(no,14)

14 format(//,6x,'rkc4b integrator')
C
C Fixed step RK Fehlberg 45

else if(ncase.eq.5)then
write(no,15)

15 format(//,6x,'rkf45a integrator')
C
C Variable step RK Fehlberg 45

else if(ncase.eq.6)then
write(no,16)

16 format(//,6x,'rkf45b integrator')
end if

C
C Heading

write(no,2)
2 format(/,9x,'t',3x,'u1(num)',4x,'u1(ex)',8x,'diff1',/)

C
C End of t = 0 heading

end if
C
C Analytical solution

u1exact=u0*dexp(lambda/alpha*(1.0d0-dexp(-alpha*t)))
C
C Difference between exact and numerical solution vectors

diff1=u(1)-u1exact
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C
C Display the numerical and exact solutions, and their
C difference

write(no,3)t,u(1),u1exact,diff1
3 format(f10.2,2f10.5,e13.4)

return
C
C End of fprint

end

Program 2.4.11
intpar, inital, derv, and fprint called in the solution of Equations 1.3 and 1.4

The output from the preceding routines (written to file ode1x1for.out in
Program 2.4.1) is as follows:

euler2a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88160 1.88160 -0.6467E-07
2.00 2.37421 2.37421 0.3879E-05
3.00 2.58627 2.58626 0.6033E-05
4.00 2.66895 2.66895 0.6924E-05
5.00 2.70004 2.70003 0.7265E-05

euler2b integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88159 1.88160 -0.6220E-05
2.00 2.37421 2.37421 -0.3778E-05
3.00 2.58626 2.58626 0.2933E-06
4.00 2.66895 2.66895 0.3665E-05
5.00 2.70003 2.70003 0.6249E-05

rkc4a integrator

t u1(num) u1(ex) diff1

0.00 1.00000 1.00000 0.0000E+00
1.00 1.88160 1.88160 -0.2719E-10
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